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This report presents the results of an experimental and analytical
study of human performance in uncoupled and coupled control systems con-
ducted under NASA Contract NAS 1-4419, monitored by the NASA Langley
Research Center.

Human pilot performance in single and two-axis systems was mathe-
matically modeled by linear second-order describing functions. Model
parameters were determined using model matching techniques. Analysis of
the models showed that the amplitude ratio and phase lead of the des-
cribing function increased with training indicating an increase in open
loop bandwidth. The phase margin also decreased with training. Increas-
ing the plant lag time constant resulted in an increase in the model
lead time constant and a decrease in the zero frequency gaine. No signifi-
cant difference was found to exist in the normalized tracking error per
axis between the two-axis tasks and the single-axis tasks. However the
model lead time constant was significantly greater in two-axis tracking.

Manual tracking of two-axis systems with cross-coupling was
studied experimentally and analytically. Approximate methods for model-
ing two-axis performance were developed and checked using a precise
spectral analysis approach. Coupled and uncoupled, symmetrical and
asymmetrical two-axis performance was compared, The results show that
modeling of cross—coupled systems is feasible and that trained subjects
are capable of decoupling the axes of some systems.

A methodology study compared the identification performance of
continuous, iterative, and extrapolation model matching techniques.
An iterative technique employing sensitivity equations for the generation
of influence coefficients was found to be the best technique due to its
excellent identification accuracy and ease of implementation. Conver-
gence in iterative techniques can be improved substantially by equalizing
the parameter adjustment rates and limiting the maximum correction per

iteration,.
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INTRODUCTION

This report presents the results of the second phase of a
two year study program on model matching techniques for the deter-
mination of parameters in human pilot models. Model matching
techniques refer to a method of system identification where the
parameters of an assumed methematical model are adjusted so as to
minimize an appropriate function of the difference between system
and model outputs, The first year of the study concentrated on
testing the feasibility of applying the method to identification
of human pilot performance in a variety of manual tracking systems.
The results are reported in NASA CR-143 (Reference 5).

The objective of the research reported here was to apply model
matching techniques to study human performance in more realistic
control situations, with an emphasis on two-axis tracking. While
the first year study concentrated on feasibility, the present
study was directed toward obtaining statistically meaningful data
on human performance, in both single and two-axis manual control
systems, An additional obJjective was the further development of the
modeling techniques and evaluation of their accuracy.

The report is divided into three major sections., The first
of these is concerned with the effects of such variables as task
difficulty and training on human performance in both single and
uncoupled cwo-axis compensatory tracking systems, The effects
of training and task difficulty were evaluated by examining the
parameters of mathematical models, Anslyses of variance were per-
formed in order to obtain statistical eignificance levels for the
major results,

The second section of the report is devoted to reporting the
results of a study of human performance in two-axis manual control
systems with cross-coupling, Very little background exists in the
area and consequently technigues for determining the mathematical
models had to be developed. Model matching techniques were applied
and their accuracy was tested by means of a theoretically exact
spectral analysis technique which was developed for the purpose,

In the spectral analysis technique developed, the human operator is



represented by a matrix whose elements are determined from a know-
ledge of the system plant dynamics and the spectral matrices of the
system excitation and tracking error signals, This portion of the
study had two major obJjectives, namely, to apply modeling methods
to the cross-coupled system and to find whether the human operator
was capable of decoupling the system, Analysis of variance was
again employed to test the significance of the conclusions,

The third section of the report deals with modeling method-
ology. It includes the results of studies on the effect of excita-
tion bandwidth and model form on parameter accuracy, on approximate
techniques for computation of time delay and higher order terms in
the model and on certain situations in which parameters cannot be
determined precisely. It includes a derivation of the theoretically
exact spectral analysis technique developed for mathematical model-
ing of human performsnce in coupled tracking systems, Identifica-
tion accuracy and general performance of continuous and various
iterative model matching techniques are compared for both open and
closed loop formulations, with the objective being the selection of

an optimum technique,




2.

2.1

2.2
2.2.1

HUMAN PERFORMANCE IN SINGLE AND TWO AXIS SYSTEMS

Introduction

This section presents the results of a study of human track-
ing performance in single axis and uncoupled two-axis manual con-
trol systems., Controlled element dynamics were selected to
approximate a realistic aircraft control task. The major objec-
tive of this phase of the work was the collection and evaluation
of statistically meaningful data on the effects of training, task
difficulty, and single vs two-axis tracking.

The evaluation was performed by first obtaining describing
function models for each control configuration using a continuous
model matching technique and then analyzing the parameters of the
describing function to determine the functional relationship be-
tween the parameters and task difficulty or training. This
analysis was conducted in the frequency domain using conventional
control system theory. Single and two-axis tracking systems were
compared through the use of describing function parameters and
Bode diagrams. Both the analysis and comparison were subjected
to an analysis of variance to determine the significance of the
results obtained. The above analysis and comparison were used
as the basis for specifying the characteristics of human perform-
ance in the single and two-axdis tracking tasks investigated.

Experimental Design
Experimental Qutline

Training and performance experiments were performed on two
manual control systems., Both experiments were concerned with
cbmpensatory tra.éking of a spot on a CRT display using a finger-
tip controller. One system was restricted to single-axis control

and the other to two-axis control with symmetrical uncoupled
Plant dynamics. The specific objectives were to obtain data for
study of the following problems:

1) Evaluation of the effect of training on tracking performance.

2) Evaluation of the effect of task difficulty on tracking per-
formance,

3) Determination of human pilot models.
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4) Comparison of single and two-axis tracking.

The plant dynamics were chosen to simulate the roll dynamics
of a fighter-type jet alrcraft., A previous study by Creer et al
(Ref. 1) on pilot opinion ratings of the lateral control charac-
teristics of such aircraft was used to obtain the parameters of
the plant dynamics.

Input disturbance signals for the tracking systems were
obtained by filtering the output of a gaussian noise generator
with a third-order filter. The input amplitude to the system was
held constant at 3.5 cm RMS deflection on the CRT displaye.

The control task difficulty was adjusted by choosing the time
constant in the plant dynamics and the break frequency of the in-
put filter.

The experimental design was a nested factorial with subjects
nested within single axis versus two-axis trackinge The within
group variables were task difficulty and number of sessions. There
were four replications within each session. A random sample of
three subjects was used within each group. The a priori reasons for
the choice of nesting subjects within number of axes was that there
might be a transfer of training effect when a subject goes from a
single to a two-axis task or vice versa. Subjects with former track-
ing experience were used. Experimental runs were of 3 minutes

duration and only the central 2 minutes were scored.

System Configuration
Figure 2-1 illustrates the configuration of the single axis

compensatory tracking system useds This system was a simulation of
the roll attitude control system typical of fighter-type aircraft as
discussed in Reference 1 and consequently represents a realistic
control taske.

Two alternate plant dynamics were chosen from Reference 1 to
give satisfactory and unsatisfactory control respectively. With a
time constant (T) of 0.3 sec the control is satisfactory (Cooper
rating = 3) while a 3 sec time constant results in unsatisfactory con-
trol (Cooper rating = 5). An unsatisfactory control configuration was
used to increase the control task difficulty for purposes of assessing
the human operator'!s performance in a more difficult task. The plant
dynamics used had the following form:
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K
G(s) -35(8) =3 7 1)

K T
(roll rads/sec) (sec)
aileron rad
5.15 0.3
5015 3.0
where
K =

aileron rad

TLaé (roll rad(sec)

2
. ., (roll rad/sec
L roll angular acceleration per unit ( aileron rad )

aileron angular deflection
6 = aileron angular deflection (aileron rad)

= roll angle (roll rads)

6, = stick angular deflection (stick rads)

68 max. = 20 degrees

The operating gains were chosen from Figure 11 of Reference 1
under the assumption that 63 = 53.

In the two-axis experiment, two channels identical to the system
shown in Figure 2-1 were used, Although the realism of such a task
is questionable, it was used nevertheless to obtain performance data

on two-axis tracking for comparison with the performance of the
human operator in a similar single axis task.

Task Definitions

Four control tasks were formulated for the experiment and were
common to both the single and two-axis phases. The four tasks were
designed to exhibit-a progressive increase in control difficulty.
Specifically the tasks were defined as follows:

TASK 1 2 3 I
rad
mb(;;é- 0.2 0.2 1.0 1.0
T (Sec) 0.3 3.0 0.3 300
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The variable W represents the break frequency of the third-order
input filter while T represents the time constant of the plant

dynamics., In two-axis tracking, a separate gaussian noise genera-
tor was used for each axis to insure that the correlation between

the two inputs would be zero.

Run Schedule

The run schedule for the single axis group was divided into 8
sessions, where the first 6 sessions constituted the training period
while the last 2 sessions were the performance sessions. In half
of the training and performance periods, the single axis experiment
was performed with the system error (x) displayed vertically on
the CRT while in the other half, the error was displayed horizontally.
A vertical error required that the operator manipulate his fingertip
controller in a vertical plane while & horizontal error required a
horizontal response.

The experimental conditions may be summarized as follows:

Experimental Conditions

System Configuration (SC)

a) Single axis b) Two-axis
Plant Dynamics (G)
a) T= 003 b) T= 3.0
Filter Break Frequency (F)
a) W, = 0.2 rad/sec b) w = 1.0 rad/sec
Subjects (S)
S=3
Replication (R)
R=4

Each session consisted of 48 runs: each subject performed four
replications of the task for each of the plant dynamics and each
filter break frequency, i.ee, G X Fx S xR = 48, The order of
presentation of the tasks was randomized for each subject and each

session. Subject fatigue was kept at a minimum by using a rest
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period of approximately 3 minutes after each replication. It was
also found necessary to limit the continuous experimentation
period to half a session.

Since training was one of the main variables of the experiment,
the subject was given a performance score upon the completion of
each replication. The MS value of the system tracking error was
used as the performance measure. Normalization of the error with
respect to the input signal was not performed as the RMS value of
the input signal amplitude was kept approximately constant during
the replication period.

In the training sessions the second replication of each task
was recorded on FM tape for future analysis by model matching
techniques. All replications of the performance session were
recorded.

The run schedule for the two-axis phase differed from the
schedule given above for the single axis phase in that five
sessions were used for training instead of six. This constituted
the only difference between the two schedules,

Determination of Human Describing Function Paramsters

The human operator response data obtained in the manner out-
lined in Section 2,2 was analyzed by using the continuous model
matching technique. In using this method to determine human
describing functions for the response data, it was assumed that
the human operator behaved as a second-order linear system governed
by the equation

(1] * - L ] 2.1
z +a,z +a,2 aqx + a,Xx (2.1)

where x is the input to the human, z is the model output and as
Qo Ggs o.h are the differential equation parameters to be deter-
mined. Equation 2.1 may be transformed to the complex frequency
domain and rewritten in describing function notation

2(s) _ K(Tl-i+ 1)
X(s (Tzs +1) (T33 +1)

(2.2)




where s is the Laplace operator, K is the zero frequency gain, and
Tl, Tz, T3 are the describing function time constants,

Since the primary purpose of the human performance study was
to evaluate the effects of task difficulty, training, and system
configuration on the describing function parameters, modeling of
a large number of experimental runs was required. The continuous
model matching method described in Section 4.2 was the most rapid
and economical method available at the time the study was performed.
The technique is readily implemented on a conventional analog com-
puter and requires only the time functions x and y, the input and
output of the human operator, respectively. These signals were
recorded on magnetic tape during the experimentation period and
were later analyzed to obtain the desired models of human response.
A block diagram of the basic open loop continuous method is pre-
sented in Fige. 4-2 of Section 4.2, The modified error criterion
function discussed in Section 4.2 was used to optimize the per-
formance of the continuous technique. Operational constants used
in the model matching technique described above are listed in
Table 2-1. A typical time history of the model parameters obtained
for one subject's performance in the vertical axis is shown in
Figure C-1. A similar history was obtained for his performance

in the horizontal axis.

Table 2-1

Operational Constants for the Continuous
Model Matching Technique

" Task Number 1 2 3 L
Parameter Adjustment Gain, K 15 15 15 15
Rate Compensation Coefficient,| 0.5 0.5 0.5 0.5

q(sec)
Error Limit, L (degrees) 0033 .0033 .02 .08
Initial Parameter Values a 20 20 20 20
a, | 20 ' 20 20 20
a.3 (0} 0 (0] o0
ah 0 0 0 0




The analysis of task difficulty and operator training was
aided by the use of several performance evaluation criteria as
well as the parameter mean values, The performance measures
were the mean squared values of the tracking error x(t), the
human output y(t), the modeling error e(t) and the power match P.
The power match, defined by

P |1-2] 100 (2.3)
y
indicates the percentage of human output power matched by the
model,

A one minute period was found to be a sufficient length of
time for the parameters to converge to their approximate steady
state values., Therefore, the first minute of the modeling of
each two minute human response tracking run was utilized for para-
meter convergence. The adjustment loop gain was then automatically
reduced by a factor of 10 in order to minimize the effect of short
term time variations in the parameter values. The performance
measures were computed during the final minute of each run.

The performance of the model matching technique is indicated
by the power match obtained for each of the run replications as
shown in Fige. 2-2. Response models for Tasks 3 and 4 normally
gave a power match from 70 to 80 percent while Task 2 response
data yielded a power match of 50 to 60 percent. Models for the
Task 1 response data could not be successfully obtained. This
result was caused by operator output signals of very low frequency
which produced unstable operation of the parameter adjustment
loope For Tasks 3 and 4, the power match is approximately constant
over the whole range of replications R. Consequently, since model
matching accuracy remains invariant during the experimental series

it may be concluded that any changes in model parameters were

in fact due to training of operators. The power match for Task 2
exhibits considerably greater variability and consequently Task 2

results must be interpreted more cautiously.
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2.4

Effect of Training and Task Difficulty on System Tracking Error

In order to analyze the system tracking error, the normalized
mean square error was used as a performance measure., Specifically,

this measure is defined by

. ojz x2dt
5 4P e, (204)
ofz r dt

which indicates that the integral square error is normalized by
the integral square input signal over the two minute scoring period.
Such a normalization is necessary to take into account the run to
run variations in input power which take place when the input
signals are not deterministic but consist of sample functions of
random processes. The analysis of system tracking error was per-
formed only for those trials from which model matching results

were obtained.

In order to compare single axis tracking with two-axis tracking
only one of the two-axis error scores could be chosen., Therefore
an analysis was performed to determine if there was any significant
difference between the horizontal and vertical axes for both the
single and two-axis data., Using the Students t-test no significant
difference was found. Therefore a score was chosen alternately from
the horizontal or the vertical axis of the two-axis tracking scores
for testing against the single axis score.

Two analyses of variance tests were conducted to determine sig-
nificant differences between the variables. The first analysis
tested differences during the learning period while the second
analysis tested differences during the performance period.

In the first analysis the variables were trgining, number of
axes, and task difficulty. For this test the second replicate of
the system tracking error for each of the first seven training
sessions was used as the test score, The result of this test is
shown in Table 2-2. This table indicates that task difficulty,
training and training-task difficulty interaction were significant,
There was no significant difference between one and two-axis track-

ing To further evaluate the effect of training, the error scores

12




Table 2-2

Analysis of Variance of the Normalized Mean Square Error

Degrees Mean
of Sum of Square
Source Freedom Squares MS  F-ratio
TRAINING PERIOD
Axis (A) 1 241 21 <«
Subjects within 4 2744, 686
Axds (S(A))
Tasks (T) 2 10098 5048 17,02
Training (L) 6 3168 528 6 o Lyly 3363t
AxT 2 202 101 <«
AxL 6 542 90 1.10
TxL 12 3232 269 L ,95%r
T x 5(A) 8 2373 297
L x S(A) 2 1966 82
AxTxL 12 612 51 <«
T x L x S(A) 48 2610 54,
PERFORMANCE PERIOD
Axis (A) 1 8 g8 <«
Subjects within N 681 170
Axis (S(A))
Tasks (T) 2 3459 1729 23,786
Replicates (R) 7 79 11 A
AxT 2 3 2 4
AxR 7 69 10 «
TxR i 114 g8 <
T x S(A) 8 582 73
R x S(&) 28 283 101
AxXxTxR 14 118 84, 1.13
T xR x S(A) 56 416 74

##¢ Significant at .0l level (1%)
¢ Significant at .OOL level (0.1%)

13




2.5

2.5.1

were determined for each task and training session by averaging
across subjects., These scores are shown in Figure 2-3 and indi-
cate that the task difficulty varies directly with the task code
number, i.e., Task 4 was the most difficult and Task 2 the least
difficult. These scores show that the amount of learning that
occurred varied with task difficulty, i.e., for the more diffi-
cult tasks, the amount of learning was greater. This relation-
ship would explain the significant interaction.

The variables of the second analysis were replicates of the
performance period, number of axes and task difficulty. For this
test the four replicates of each of the last two sessions were
used as test scores. Table 2-2 shows that for this test the only
significant difference was due to task difficulty. The levels of
task difficulty, averaged across subjects and replicates are ap-
parent from Figure 2-3. It should be noted that in this test as
in the previous training analysis there was no significant differ-
ence between single and two-axis tracking.

Effect of Training on Human Describing Function Parameters

It has been shown in Section 2.4 that the system tracking
error decreased as the subjects became more experienced or trained
in controlling the tracking system. In this section, the human
describing function parameters are examined using conventional
control systcm theory to determine which parameters a human opera-
tor changes to achieve greater tracking accuracy. Both the single
and two-axis control tasks are analyzed and emphasis is placed on
describing the human operatort'!s performance in the freguency
domain. An analysis of variance to determine the significance
level of the results obtained is presented in Section 2.6.

Single-Axis Tracking

Human describing function parameters were evaluated for single
axis control tasks 2, 3, and 4, using the model matching technique
as described in Section 2.3. In the training phase only the second
replicate in each training session was analyzed while every repli-
cate was evaluated in the two performance sessions of the experiment.
The parameters obtained were plotted versus replication (R) to deter-

mine if any correlation existed between the parameters and training.

1k
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2-5.2

Because the variance of the data points was large the method
of least squares was used to obtain the best linear fit to the
variation of the data points with replication. The linear trends
obtained for each task were averaged over the three subjects to
obtain the average parameter trends as a function of training and
are shown in Figure 2-4.

Examination of the average trends shown in Figure 2-4 reveals
an increase in the gain K for Task 3 and an increase in the time

constant T. for Task 4. all other trends are small by comparison.

In anlattempt to gain a more complete understanding of the
parameter variations due to training, Bode diagrams were obtained
for the untrained subject (R=4) and the trained subject (R=32).
Bode diagrams were used as they give a complete picture of the
describing function in the frequency domain and hence can provide
an overall view of the interactions among the parameters. Figure
2-5 shows the average Bode diagram obtained for Task 4. Similar
diagrems were obtained for Tasks 2 and 3. Examination of the Bode
diagrams revesled that over a large frequency range, the amplitude

ratio and phase lead increased with training for Tasks 2 and 4.
Task )4 exhibits the greatest increase in gain and phase lead
while Task 3 showed relatively little change. Task 3 did show an
increase in the zero frequency gain.

The system open loop Bode diagram {(human operator plus plant)
for Task 4 is shown in Figure 2-6 and clearly indicates an increase
in amplitude ratioc and phase lead with training. As a result the
open loop bandwidth (i.e., the frequency range over which the
amplitude ratio is greater than O db) also increases with training.
The phase margin vy shows little change with training and has a
value of approximately 500.

Two-Axis Tracking

Human describing function parameters were also evaluated for

Tasks 2, 3, and 4 of the two-axis tracking system using the same
analysis technique as described in Section 2.3. The parameters

obtained for each axis of the two-axis system were averaged.

16
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2.6

These parameters were now averaged over the subjects and then
plotted versus replication to ascertain if any correlation existed
between the parameters and traininge.

Figure 2-7 shows the averaged least squared linear fits
obtained for the parameters in each control task analyzed. The

only trends which appear are:
¢ K increases for Task 3
L Tl increases for Tasks 3 and 4

. T2 increases for Task 2

° T3 increases for Task 3 and decreases for Task 2

Average Bode diagrams obtained for Tasks 2, 3 and 4 consis-
tently indicate that the subjects.(on the average) increased
their amplitude ratio, and bandwidth with training. The Task 4
Bode diagram is shown in Figure 2-8. Phase lead increased only at
low frequencies while the phase margins decreased. The system
open loop Bode plot for Task 4 is shown in Figure 2-9 and indi-
cates that an increase in amplitude ratio, phase lead and band-
width was obtained with training. In addition the phase margin
decreased from 52° to hOo.

'Effect of Task Difficulty on Human Describing Function Parameters

The analysis of Section 2.4 was concerned with the relative
difficulty of the four tasks of the experiment. This section
deals with the correlations obtained between task difficulty and
the frequency response of the human operator. Both single and
two-axis performance data were analyzed. An analysis of variance
was performed to determine the significance level of the results,

Bode diagrams obtained for all tasks of the performance period
in the single and two-axis tracking systems were averaged over
subjects. The mean amplitude and phase diagrams are shown in
Figures 2-10 through 2-13., Examination of the Bode diagrams
for both single and two-axis tracking reveals the following
correlations between task difficulty and the frequency response
parameters:
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1) The zero frequency gain K has a maximum value for Task 3 and
a minimum value for Task 2 (see Figures 2-10 and 2-12). Since

the lag time constant of the plant dynamics for Task 3 has one-
tenth the value of the corresponding time constant in the plant
dynamics of Tasks 2 and 4, it follows that the Task 3 dynamics

are more stable than either the Task 2 or 4 dynamics. Consequently

tye'operator can use a higher operating gain in Task 3.

2) Figures 2-11 and 2-13 indicate that the operator's phase lead
at low frequencies was greater in Tasks 2 and 4 than in Task 3.
Since it has been shown above that Tasks 2 and 4 are more unstable
than Task 3, it is apparent that the operator compensates for the
destabilizing effect of the larger lag time constant by increasing
the lead time constant of his describing function.

3) The phase lead at low frequencies was less for Task 2 than
Task 4 as shown in Figures 2-11 and 2-13. Since the input fre-
quency bandwidth for Task 2 was only 0.2 r/s while the input band-
width for Tasks 3 and 4 was 1 r/s, it follows that Task 4 is a
more difficult task for which the operator will use more phase
lead.

The conclusions obtained above are based on the relative mag-
nitude of the zero frequency gain K and lead time constant Tl
obtained for Tasks 2, 3, and 4. Analysis of variance was used
to test the significance of both the K and T1 parameters obtained
for each task, as shown in Tables 2-3 and 2-4 respectively. The
design of the analysis was identical to that used in Section 2.4.
From Tables 2-3 and 2-4 it is evident that the dependence of both
K and Tl on Tasks was significant at the 0.1% level. Thus the
data used in the above discussion is significant at the 0.1%
level.

Parameter variation due to learning was not significant.

This factor may be due to subject differences or the small sample
sizes In observing the individual subjects it can be shown that
they started with different parameters prior to.learning. However
after learning they converged to approximately the same model.
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Table 2-3
Analysis of Variance for K

Source

LEARNING PERIOD

Axis (A)
Subjects within
Axis (S(A)

Tasks (T)

PERFORMANCE PERIOD

Axis (A)
Subjects within
Axis (S(A))

Tasks (T)
Replicates (R)
AxT

88t Significant at

Degrees Mean
of Sum of Square
Freedom Squares _ MS F-ratio
1 62 62 2.53
4 96 2
2 2381 1190  79.5%%#
6 23 L A
2 58 29 1.96
6 18 3 A
12 66 6 1.50
8 119 15
24 108 4
12 36 3 <
48 231 5
1 43 3 <A
I 202 50
2 364 1823 38,69
7 34 5 153
2 L9 2 <«
7 35 5 Llokh
L 3 > 1.65
8 376 L7
28 96 3
1, 67 5 1.50
56 177 34

.001 level (0.1%)



Table 2-4
Analysis of Variance for T

1
Degrees Mean
of Sum of Square
Freedom Squares MS F-ratio
TRAINING PERIOD
Axis (A) 1l 922 922 1.34
Subjects within L 2740 685
Axis (S(a))
Tasks (T) 2 9520 4760 N
Learning (L) 6 1265 211 1.20
AxT 2 58 29 <1
AxL 6 2313 386 2,20
TxL 12 2228 186 1.43
T x S(A) 8 862 107
L x S(A) 2l 4214 175
AxTxL 12 1897 158 1l.22
TxLxS(A) 48 6219 129
PERFORMANCE PERIOD
Axis (A) 1 1525 1525 2.13
Subjects within 4 2867 717
Axis (S(A))
Tasks (T) 2 20991 10496 353 43k
Replicates (R) 7 1395 199 1.09
AxT 2 405 202 6.82%#
A xR 7 1143 163 <1
TxR 14 4359 31 1.42
T x S(A) 8 238 30
R x S(A) 28 5110 182
AxTxR 14 2283 163 L
T xR x S(A) 56 12286 29

3*

Significant at .05 level (5%)
##%  Significant at .OOL level (0.1%)
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Since subjects were treated as a random sample from a population,
differences between subjects could not be tested and in this
experiment there is no error term for testing the variables if

subjects are treated as a fixed sample.

Comparison of Single and Two-Axis Tracking
A comparison was made between single and two-axis tracking

to determine what differences existed between these two types

of control tasks. An analysis of variance performed on the
system tracking error for both types of control tasks showed

that no significant difference existed between single and two-
axis tracking for all control tasks as far as the system tracking
error was concerned (cf. Section 2.4,). However the analysis of
variance for the Tl data obtained in the performance period (cf.
Section 2.6), showed that the interaction between tasks and single
versus two-axis tracking was significant at the 5% level. This
interaction is shown explicitly in the values for Tl averaged
across subjects and replicates in Table 2-5 where only Tasks 3
and 4 show a difference. For both tasks Tl was significantly
larger in the two-axis tracking system. Bode diagrams obtained
from the performance data of Section 2.5 are shown in Figures 2-14
through 2-16. The Bode diagrams in general confirm the analysis
of variance data in that the only large difference between single
and two-axis tracking appears to be the phase angle of Tasks 3
and 4.

Table 2-5
Average Tl for Single and Two-Axis Tracking (Seconds)

Task 2 3 I
Single Axis 2,69 |1.32 | 4013
Two-Axis 2 u83 2 009 5 o&_
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2.8

2.8.1

2.8.2

The fact that system tracking error in either axis of the
two-axis group was no greater than that for the single axis group
is not contradictory of earlier results. In reviewing the litera-
ture, very few studies have directly tested this difference. In
analyzing the results of a study by Chernikoff, et al (Reference 2),
there appears to be no difference between one and two-axis track-
ing for tasks with controlled elements of position, rate and
acceleration. Recently in results from Bolt, Beranek and Newman,
Inc, (Reference 3) no difference was shown between single and
two-axis tracking.

Conclusions

Experimental data obtained from single and two-axis tracking
experiments were analyzed using camtinuous matching techniques,
and conventional control system theory; An analysis of variance
was performed on the results obtained to determine their signifi-
cance level, The analysis of the human performance data led to

the following conclusions:

Single vs, Two-Axis Tracking Performance

1) The system tracking errors in the two-axis tasks were not
significantly different fram the single axis tasks. If it is
assumed that the subject's information processing capability is not
fully loaded the results of this experiment are plausible. The lat-
ter hypothesis could be tested by the addition of more axes wiun
the same input function and dynamics until the subject's performance
starts to degrade due to task loading.

2)  Por Tasks 3 and 4 only, the lead time constant T, was signifi-
cantly larger in models of two-axis tracking than in models of
single axis tracking. Since this difference did not appear in
Task 2, it can be concluded that Tl is a measure of differences in
operator performance between single and two-axis tracking only
when the input signal bandwidth is sufficiently high.

Effects of Task Difficulty

1) The task difficulty (as measured by tracking error) was
found to increase significantly with the task code number.
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2) The rate of decrease of system tracking error with training
was dependent upon task difficulty. The more difficult tasks
showed a greater degree of learning.

3) The human operator model showed a significantly higher zero
frequency gain in Task 3 than either Tasks 2 or 4 because Task 3
was more stable as the lag time constant in the plant dynamics
was smaller by a factor of 10. For the same reason, the human
operator's model lead time constant was significantly greater
in Tasks 2 and L. '

L) The operator's model lead time constant was greater in Task
Ly than Task 2 because Task 4 was a more difficult task due to
the input frequency bandwidth being larger.,

2.8.3 Effects of Training

1) System tracking error decreased significantly for all control
tasks in both single and two-axis tracking during training.

2) For both single and two-axis tracking, the average human
operator increased his amplitude ratio and phase lead with training
as measured from model Bode diagrams. These changes resulted in an
increased open loop bandwidth and a decreased phase margin.

3) An analysis of variance showed no significant trend to exist
in the variation of the parameters K and Tl (zero frequency gain
and lead time constant) with level of training. Parameters T2 and
'I‘3 were not tested,

The analysis of variance on the yariation of the parameters K
and Tl with training showed that the variation was not significant.
The significance test performed may not be a valid test in this
case as only 2 parameters of the describing function were tested.
Since the describing function used consisted of 4 parameters which
together describe the dynamic behavior of the human operator, it
appears that all parameters must be tested simultaneously to obtain
an accurate significance level. Since the Bode diagram is a com-
plete dynamic representation of the human describing functiom, it
is probable that conclusion 2 is more valid than conclusion 3.
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3.

3.1

3.2

HUMAN FERFORMANCE IN TwWO-AXIS SYSTEMS WITH CROSS-COUFLING

Introduction

This section presents the results of a study of human track-
ing performance in coupled two-axis manual control systems, In
this phase of the work, the primary objective was the collection
and evaluation of statistically meaningful data on the effects
of training and cross-coupling. Emphasis was placed on determining
whether a human operator could successfully decouple a coupled
two-axis control taske.

The evaluation was performed by first modeling the human
operator's performance by an asymmetric lattice network and then
determining the network describing functions using an iterative
model matching technique. An analytical study of the coupled
two-axis control system showed that the system could be manually
decoupled if the network describing functions were properly related
to the transfer functions of the plant dynamics. The required
relations were explicitly expressed by two decoupling equations.
Describing functions obtained from the experimental study were
compared with the decoupling equations to determine if the human
operator was able to decouple the system. Training and task diffi-
culty were analyzed using system tracking error. The above analysis
and comparison was used as the basis for describing the character-
istics of human' performance in the coupled two-axis systems inves-

tigated.

The Cross-Coupled Human Operator Model
Human tracking performance in a two-axis system with input

cross-coupling was evaluated by modeling the human operator with
an asymmetric lattice network as shown in the signal flow diagram
of Fig,uré 3-1. This system representation is identical to that
given in Reference 4. The describing functions of the lattice
network are designated by Hi j while Gij represents the transfer
functions of the plant dynamics, Coupling in the plant dynamics
is of an input form as a control input to the plant dynamics in
one axis produces a plant response in both axes. Components of the
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Figure 3-1: The Two-Axis Input Coupled Tracking System

r, = a-axis reference signal

x, = a-axis error signal

Y, = a-axis stick deflection

c, = a-axis system output signal

n, = human operator?s response in the a-axis which is not

linearly coherent with r, or ry

H = linear describing function relating Y, to x,

H = linear describing function relating Tp to x,

G = a-axis plant dynamics relating . to Y,

G = a-axis coupling dynamics relating ¢, to y, (i.es, input
cross—-coupling

The corresponding signals and transfer functions in the b axis

are similarly defined.
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operator outputs (ya and yb) which are not linearly coherent with
the forcing functions (ra and rb) are represented by the noise
signals (na and nb).

The coupled two-axis system can be decoupled if the human
operator is able to use the correct cross-coupled describing
functions in the lattice representation of his behavior. Decoup-
ling of the a axis from the b axis requires that the a axis output
signal ¢ a be independent of the tracking error in the b axis Xpe
For zero noise (na =n = 0), it may analytically be shown that
. is related to X, andxb by the equation

c =(G_H

a aa aa + Gab Hba)xa. + (Gaa H

ab ¥ Gap Hyp)x,
Consequently the a axis will be decoupled from the b axis if the
human operator chooses Ha such that the following decoupling

condition exists

b

Hp=-\3 By (3.1)
aa

Similarly it may be shown that the decoupling condition required

for decoupling the b axis fran the a axis is

G
ba
H = - — H (3.2)
ba <be> aa

The decoupling conditions given by Equations 3.1 and 3.2 are inde-
pendent indicating that theoretically it is possible for the human
operator to decouple the b axis from the a axis and not decouple the
a axis from the b axis or vice versa.

In the investigation of the operatort!s performance in cross
coupled tracking systems, the control tasks were designed to possess
various degrees of cross-coupling. The control tasks are described
in detail in Section 3.3.
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Experimental Design

Experimental Outline

A training and performance experiment was performed on a
two-axis manual control system with input coupling. The human
operator performed a compensatory tracking task by using a finger
tip controller to minimize the tracking error presented to him
as a spot on a CRT display. Both asymmetrical and symmetrical
input coupling was used. The experimental objectives were to
obtain data for study of the following problems:

1) Evaluation of the effect of training and task difficulty on
tracking performance.

2) Determmination of human pilot models.

3) Evaluation of the effects of cross-coupled plant dynamics

on the human pilot models.
L) Comparison of uncoupled and coupled tracking systems.

The plant dynamics were of second-order form and consisted
of a pure integration plus a first-order lag with a time constant
of 0.3 seconds. Four control configurations with various degrees
of cross-coupling were used where the cross-coupling dynamics were
of the samé form as the main control dynamics,

Input signals to the two-axis compensatory tracking system
were obtained by filtering the output of a gaussian noise genera-
tor with a third-order filter operating with a cutoff frequency of
1 radian per seconde. The input spectrum was augmented with an
additional spectrum extending to 10 radians per second with its
power level 30 db below the primary spectrum. This secondary
spectrum was generated from the same noise source using a first-
order filter. Separate noise generators were used for generating
the two input signals to guarantee zero linear coherence between
the two disturbances. The magnitude of the input signal was main-
tained at 3.5 cms RMS deflection on the CRT display.




The experimental design was a complete factorial with the
factors being subject, control task, and task replication. Three
subjects with previous tracking experience were used and four
control tasks were investigated. The experiment consisted of
three training sessions followed by a fourth and final performance
session. In a given session, each subject performed four replicates
of each control taske The order of the control tasks was randomized
for each subject and each session. For training purposes, perfor-
mance measures were reported to the subject upon completion of
each replication, Hach replication was of 2.5 minutes duration and

only the central 2 minutes were scored.

3.3.2 Task Definitions
Since input cross-coupling was the principal phenomenon to be ex-

amined, the tasks were designed to exhibit various degrees of cross-
coupling ranging from the no-coupling level to the symmetrical coupling

level. In the notation below, the subscript a refers to the horizontal
channel while b rcfers to the vertical channel. Only the plant dynamics

are shown.

Task 1 No—Coupling

¥y o a8 c
a” S8 542
G ng) - Ggg) " 8(0.38 +1) G
bb c
Yy —- b

Figure 3-2 FPlant Dynamics for Task 1

Task 2 Asymmetrical Coupling
G
ya‘ > ca.
Gba G = =G = 7_'2__
ba S 0035 + l)
Yb Cy
G

Figure 3-3 Plant Dynamics for Task 2
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Task 3 Symmetrical Coupling

G
G = =Ue = 2.0
T, c, ba 075G s(0.35 + 1)
b
- - 9
Cap Gyp = 04756 = Srp232 1y
Yo > Y
G

Figure 3-4 Flant Dynamics for Task 3

Task 4 Asymmetrical Coupling

Task 4 was identical to Task 2 with the exception that the input
signal ry in the vertical axis was zero., This task was designed
to determine if the human operator could decouple the b axis from

the z axis when the input disturbance to the b axis was zero.

Approximate Model Determination by a Model Matching Technique

The human operator response data obtained for the cross-
coupled tasks outlined in Section 3.3 was analyzed using the
iterative model matching technique described in Section 4«3
For each of the four control tasks, the human operator's perform-
ance was modeled by an asymmetric lattice filter as shown for
the two-axis input coupled tracking system in Figure 3-1l. It
was assumed that if each filter element was of linear second
order form, then the lattice filter model would adequately des-
cribe the tracking behavior of the human operator provided the
proper filter parameters were chosens. Specifically, each filter

element was described by an equation of the form

z2+a.z2+a,2 = a,X+a,Xx (3.3)

1 2 3 k

where x is the element input, z is the element output and oy
(i= 1,2,3,4) are the differential equation parameters to be
determined.

Equation 3,3 may be transformed to the complex frequency

domain and rewritten in describing function notation as

2(s) _ K(Tls + 1)
X(s) (Tzs + l)(TBS + 1)
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where s is the Laplace operator, K is the zero freguency zain

and T; (i = 1,2,3) are the describing function time constantse
Individual determination of the lattice elements using closed

or open loop formulations* of the model matching technique is

impossible because of the coupling between the two control axes.

However, approximate determinations are possible for each control

task if executed in the following manner.

TASK 1

Representation of the human operator by a lattice filter
leads to the following signal flow diagram for the Task 1 plant
dynamicse.

Figure 3-5 Signal Flow Diagram for Task 1

The describing functions Haa and be may be determined approximately
using the closed loop formulation of the iterative model matching
technique as described in Section 4.3. Signals r, and Y. would

be used to obtain Ha.a while ry and Ty would be required to obtain
be. In the determination of VHaa.’ the signal Y, in addition to

being a function of Haa.’ is also a function of H G . and Hab

s
because of the coupling functions Hba and Ha.b' ;ﬁus E:a may
only be approximated. However the approximation may be quite good
if the combined effect of Hba’ be, and Hab substantially attenu-
ates the signal X, . Since the plant dynamics are not coupled
in Task 1, it is probable that the human operator will not intro-
duce appreciable cross-coupling and consequently accurate deter-

mination of H and H could be made.
aa bb

*The relative merits of open and closed formulations are discussed
in Section 4.3.
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Describing function Hab and Hba may be determined in an open
loop manner using the signals X Ty and Xys Ve Again the deter-

minations are approximate because of the cross-coupling.

TASK 2

Figure 3-6 shows the signal flow diagram for Task 2. Again
the elements Haa and be may be determined approximately using a
closed loop formulation. However, the element Hab may be deter-
mined in a closed loop manner by closing the loop through the
plant coupling function Gba and the b axis feedback path. Note
that the zero frequency gain of Hab must be negative for stable

*
operation. An open loop formulation was used to obtain Hba'
-1

Figure 3-6 Signal Flow Diagram for Task 2

TASK
For this task, the elements Haa and be were determined

using the closed loop formulation as for Task 1, while the ele-

ments H . and H

ab
as for Task 2. No stability problem arose in the determination

pa Were obtained using the closed loop technique

of Hba as Ghb had a positive zero frequency gaine

TASK 4

The elements were determined in the same manner as outlined
for Task 2 except that be and Hab could not be determined since
the excitation signal rb(t) Was zero.

* .2
In this task Gba = E—(—-:—s—s-_ri'j
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Approximate determinations of the describing functions were ob-

tained by using the iterative model matching technique described in
Section 4¢3. The iterative technique employing a finite difference

calculation for the sensitivity coefficient was used. Table 3

-1 shows

the operational constants used in the analog computer implementation of

the technique. 1In all deteminations the iteration interval was l.5 seconds,

A comparison between the approximate models and the correct models was
made for one subject (Section 4.8) and yielded close agreement, thus indi-
cating that the approximate models obtained were satisfactory. Typical

time histories of the human operator's pParameters for Tasks 2
in Appendix C.

Table 3-1

nd 3 are given

Operational Constants for the Iterative Model Matching Technique

. ALL Tasks | 2% 2 My foige 1 | Taskl | Tasks 2 £
Task and Describing Task 3 H H i
Function Haa ¢ be H. £H “ab ba Hba.
ab ba
Parameter k 20 - 50 25 10 10
Mjustment 1 120 300 150 60 60
Gains 2
k3 20 25 12.5 5 5
kh 60 150 75 30 30
Parameter ml 1 1 1 1 1
fset
0f M, 3 3 3 3 3
Aa3 0.5 0.5 0.5 0.5 0«5
M 3 3 3 3 3
L
Maximum oy 1 1l 1 1 1
Parameter 2 2 2
Correction a2 2 2
Per Iteration 0.3 1 1 1 1 1
ah 1 1l 1 1 1
Initial a 8 12 10 4 10
Parameter 10 16
20 2
Values %20 16 22 3
a30 10 7 L 10 6
18
aL;O 15 2 L 4

k5




3.5

Prediction of Human Tracking Performance

Using the decoupling equations derived in Section 3.2 it is
possible to express the coupling describing functions Hi j in terms
of the coupling functions Hi i for the case when the human operator
is able to decouple the system and not generate appreciable noise
signals (na, nb) in the process, Since the operator will neither
be able to decouple the system completely nor generate zero noise
signals, the relations between H 13 and Hii will at best be approxi-
mations. However an a priori knowledge of human performance in
cross-coupled systems would be valuable in design of such systems
even though the prediction would be an approximation.

The following predictions of human performance may be made
for the control tasks specified in Section 3.3.

Task 1 Gab‘Gba.go’ Gaa=be=G

bab
Hp=-\G JHp =0
aa

Task 2, 4 Gp =0 G =G, G =G, =G
Hab =0
Hba = Haa
Task 3 Gy, = 02756, G = —0.75G, G, =G, =G

Ha.b = -0075 be

e}
]

ba = 0s75 H__
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Examination of the human coupling describing functions Hij indi-
cates that they are simply related to the uncoupled describing
functions Hii’ Since the relations are simple for all tasks except
Task 3, the human operator could be expected to decouple the system,
Task 3 is difficult to decouple since the operator must introduce
a 180 degree phase shift in generating Hab' The discussion in
Section 3.7 will in fact show that the human operator's performance
in coupled two-axis tracking can be predicted with a fair degree
of accuracy.

In order to visualize the manner in which the operator should
ideally decouple the system, the control problem may be treated
as a transformation of coordinate axes. For the control tasks
investigated, the coupling transfer functions of the plant dynamics
differed from the uncoupled functions by multiplicative constants.
Ideal decoupling required that the coupling describing functions
of the human operator be similarly related to the uncoupled des-
cribing functions. Consequently the ideally decoupled system may
be represented by the signal flow diagram shown in Figure 3-7. In
this diagram KHi represents the multiplicative constant of the
human operator and KGi represents the corresponding constant in
the plant dynamics, If matrix notation is used, then the system
block diagram may be represented as shown in Figure 3-8 where

rrxxHHaaOC- GaaOHClKHb

a a
Ty Xy 0 Hy, 0 Gy, Ko 1
(g
0 1 for Task 1
[1 0
GC = < 11 for Tasks 2 and 4

-
1 Dl for task 3
.75 1
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Decoupling requires that the matrix product G.H, be diagonale Thus

ccC
the elements of HC have the following values:
"L o]
H = Task 1
¢ Lo ]
1 0]
HC = Tasks 2 and 4
(1 1]
(1 =75
Hy =|.5 1| Tesk3

Physically the decoupling process may be considered as a
transformation of axes. Assume the system is decoupled and use the
unit vectors Z and g to specify the error signal x. In generating
the signal y, the human operator must transform these vectors to a
new coordinate system whose unit vectors are a' and -b-'-. The new
vectors must be related to the a and b vectors such that the
signal y is transformed back to the original coordinate system
when operated on by the coupling matrix GC.

Since Task 1 possesses no cross-coupling, the transformation

between the unit vectors is one to one, i.e.;

- - -

-
at = a and bt = b

For Tasks 2 and 4, the transformation may be derived by consider-
ing the matrix operations on the vector ;. Specifically

- - - - -
y=y.a +yb - ya,a' +yb,b'

a
or a a!
[a %] |3 = Par %] |3

But y ya'

[+

48




Thus for Tasks 2 and 4

a _ a
=
[¥a %] [_| = [ v'5] .
b o 1] |b
al Z+S
or =
bt b

Consequently the transformation equations are

= -l -
a'= a+b

-l

-
bt = b

Similarly the transformation equations for Task 3 are found to be

- al -
a' = a + 0,75 b
- - -
bt = -0.75a +b

Figure 3-9 illustrates the transformation equations for Tasks 1
through 4. If, for example, the operator observes the displayed
error stationary at position A, he ideally would move the control
stick to position B to null the error. If the human performs in
this manner, he will be able to decouple the system,
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HUMAN QFERATOR PLANT

~1

Figure 3-7 Signal Flow Diagram of Decoupled System

Figure 3-8 Matrix Block Diagram of Decoupled System
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3.6

Effect of Training and Task Difficulty on System Tracking Error

The root mean square value of the system tracking error was
used as a criterion to evaluate training and task difficulty.
Normalization with respect to the input signal was not done since
the input signal was held approximately constant. Specifically an
RMS error score was calculated for each axis in each of the task
replications. Each score was obtained from the integral of the
square of the error signal over the 2% minute run:

3
T
YRS = % j %%t
0

The RMS errors were averaged over the three subjects and
plotted as a function of replication number in Figures 3-10 and
3-11, Training is evidenced by the downward trend of the scores
with increasing replication number. Examination of the learning
curves shown in Figures 3-10 and 3-11 yields the following
observations on the effect of training and task difficulty on
system tracking error.

1) In the first few replications, the lower error scores are
found in Task 1 in both axes and Task 2 in the a axis., These are
the axes in which cross-coupling has no effect. Since the subjects
had been previously trained in two-axis uncoupled tasks, they were
initially able to perform these better than the new cross-coupled
tasks.

2) Task 3, a symmetrical task, has error scores of approximately
equal magnitude in each axis, whereas Task 2, an asymmetrical task,
results in markedly different errors. In fact, the error score

for Task 2 in the b axis is greater than any other score, indicating
that this was the most difficult task.

3) Task 4 is one in which there is no input signal to the b axis.
The only input to the b axis error was cross-coupling from the a

axis, The low RMS error score in the b axis indicates the ability
of the subject to learn to remove the effect of the cross-coupling
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and reduce /’,,i';he error signal in that axis. Note that training was
most pronoﬁnced for this case. The error in the a axis is about
that of the a axis of Task 2, the task with the same configuration
but inputs in both axes,
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Effect of Cross-Coupling on Human Performance

Introduction

Approximate human operator models were obtained for the final
performance session of the cross-coupled experiment using the
iterative model matching technique. The average second-order
describing functions determined are tabulated in Table 3~2 as a
function of control task. Figures 3-12 thrbugh 3-15 show the
corresponding Bode diagrams for these tasks. Comparison of the
frequency response data with the prediction of human performance
made in Section 3.5 leads to the following results.,

Results

Figures 3-12 and 3-13 indicate clearly that the average
describing functions Haa and be were essentially identical for
all control tasks investigated. It may be concluded that various
degrees of cross-coupling in the plant dynamics do not affect
the human's major describing functions Haa and be. However the
describing functions Hab
cross—-coupling. Specifically the following relations were found.

and H , are related to the degree of

" Task 1

The control dynamics in Task 1 were uncoupled and theoretically
the human operator should not introduce any cross-coupling (i.e.,
ideally, Hab = Hba = 0), Figure 3-14 indicates that |Hab]is down
10 db from |be| (Figure 3-13). The zero frequency gain of Hy,
(Figure 3-15) is down 19 db from luaa| (Figure 3-12) while the
response around 6 r/s is of the same order as 'Haal' This latter
result indicates that the operator did not perform as predicted.

Task 2
To decouple this asymmetrically coupled control task, the
human operator must adjust Hab and Hba such that

Hab =0

Hpa = Hag
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Figure 3-14 shows that [H_, | is 25 db down with respect to |Hyy |
arid thus 'Habl may be considered zero for all practical purposes.
The comparison of [H_ | and |#,,| shown in Figure 3-16 indicates
that |H_ | closely resembles |H,,| and consequently the operator
was essentially able to decouple the system. Since the magnitude
of the frequency response for IHbaI was consisténtly greater than
the response for IHaa' (Figure 3-16), it was concluded that the

operator overcompensated for the decoupling required.

Task 3
Decoupling of the symmetrically coupled task requires that

the human operator choose Hab and Hba such that

Hyp = 0475 H

Hba = 0075 Haa

Since the amplitudeé ratio of Hab (Figure 3-14) is down 21 db

from |be], Hab may be considered zero for all practical purposes.
The amplitude ratio of Hba (Figure 3-15) does closely resemble
lHaa' between 1.5 and 10 r/s, but at frequencies below 1.5 r/s

the resemblance no longer exists. Thus the human operator chooses
leal as predicted over the frequency bandwidth indicated but is
unable to properly choose 'Hab|'

Task 4

The decoupling equations for Task 4 are identical with those
for Task 2 since the plant dynamics of the two tasks are equal.
Comparison o.f--,l:!b-a and Haa (Figure 3-16) indicates that the two
Bode diagrams closely resemble each other and consequently the
operator behaves as predicted. The difference in zero frequency
gains for Task 4 is only 3.8 db while for Task 2 this difference
was 7.4 db. Note that the phase curves for Task ) are also more
identical than in Task 2. Thus the prediction was much better
for Task 4 than Task 2. This was attributed to the fact that ry
was made zero for Task 4 and consequently the task was less diffi-~
cult than Task 2., Reference to the RMS tracking error scores in
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Figures 3-10 and 3-11 indicates that Task 4 was indeed less
difficult than Task 2. Since Hab was not determined, no infor-
mation was available for comparison purposes. However it is
believed that Hab is essentially zero as was found in Task 2

since the two tasks are so closely related.

Statistical Analysis of Zero Frequency Gain (K)
An analysis of variance test was applied to the obtained
values of the zero frequency gain (K) for the describing functions

H o,
aa
if the differences obtained in these terms were due to differences

be, Hab and Hba' This analysis was performed to determine

in the task or intra- and/or inter-subject variability. The
analysis of variance design was a full factorial using the scores
from the last session of the experiment (Section 3.3). The vari-
ables were the four cross-coupling tasks, the four replicates
of the last session and the three subjects. The subjects were
treated as a random sample from a group of previously trained
subjects and the other variables were treated as fixed populations.
The results of the analysis are shown in Table 3-3 for the
four describing functions., Using the 1% level as the a priori

significance level because of the small sample size, H__ was the

ba
only function showing significant differences between the tasks,
This agrees with the previous analysis of the Bode diagrams in

Section 3.7.2. It should also be noted that be and Hab

significant task differences at the 5% level and Hba and Ha

showed
b
showed significant replicate differences at the 5% level. These
differences are probably due to the small subject variability as
reflected in the subject mean square terms and the subject inter-
action mean square terms of Table 3-3. This indicates that the
three subjects utilized in this task had similar describing
functions for the various tasks, If the subject sample had been
larger it is expected that the 5% level differences would dis-
appear.

Duncan's Multiple Range Test was applied to the mean values
of K for Hba' This analysis showed no differences between Tasks 1
and 3 or 2 and 4 but significant differences at the 2% level existed

between these two groupings.

58




(82%€°+T) (STTT +T)

(8500°-T)6%L0*

qe

>80LL0°+868Y°+T

(SZTe +1)9°T

L (8TI8+T) (88ET +T) .

(egle*+T)452 2

Bq

(s795°+T) (S12T°+T)
(s009°+T).LY18°

29

SUOT30UNy BUTQTIOSS(] OSEJOAY

-t °Tqey




Table 3-3

Analysis of Variance of Zero Frequency Gain SK)

Degrees of
Source Freedom

Task
Replicates
Subjects
TxR
TxS

Rx S
TxRxS

BN O DWW

[

bb

Task
Replicates
Sub jects
TxR
TxS
RxS
TxRxS

ISP e F SAVAN

-

Task
Replicates
Subjects
TxR
TxS

Rx S
TxRxS

B ONONO DWW

-

ab

Task
Replicates
Subjects
TxR
TxS

Rx S
TxRxS

DONEONNDWN

[

* Significant at 0.05 level (3%)
*t Significant at 0,01 level (1%)

Sum of
uares

14
75
75
33
16
59

109

3885
58

49
159

5L,
158

134

Sh
2

60

Mean

guare

5546
5247
13445
Tk
23.2
16.3
8.7

67

25

3745
5¢5

99
8ek4

1295
1.7

Sely
26.5

2.33

345

257
52,7
1.5
22.3
21.8

- 1.8

2.40
3.22

<1l

16473
2453

<1l

48,87
5.03%

1.56

11.81%
5.85%

1.89



m.mm JoJ sweadeTq opog CT-€ oanStd

(oes/pex) IoNENDEUL

puEns

o

- B St ekt et N e S o A
. 00 U I Pt NIER SN

(

¥SVL

3

Q
f

PHASE (deg)

oc-

61

GAIN (ab)

|
4

PO IS W JRY S N
PUPSPA e —— - N a—
-
] f
= - T

SN NN

JRSHPRECHIN PP, Jo-.y ... - —

Z ywow

ki

T

0T R O 200N - — 1 : {38 WA 78 WOV FYENY SYNNE N B 0N S tefTITIEREUNUEE |




1%

GAIN (ab)

nnm Jo0J sureaSeTq opog (T1-€ oanITjg

(s0s/pRr) XONANDTUL
ot 0°T 0

N
i

(deg)

3
i

PHASE
62

g3 e 1508 YA L LIS EERS CEDEA H5 IR AT IR 1SRN SRR RN N T 19 RAE BN
- Lo, I i 8 LOTLE TEE S IR ST _._1, b 15 T; N L
B P YU JERN IEPOR 1 (1368 CINS FERSY SRS RN T : T
S P NS SRS IO L NN L i ;
(“.rlﬂ T, i T ,, v % -
; T .
- - N e I SRNRE A - ! _,_,, :
T ) T : - = ;
e i e AR e e R 4 y
4 ! SO A e I
) T I H [ N s N 38 SRS [
- JE AR RRREY AN § 1 i ! :
J DN G . NN : T
g EBES BEL A ¢ T T
I T AN e
RN h% H )
i /V b B B
. ! ! N L B SN T
- N +=
; A4l -k R 5
-t t 51 PARE ENERN N N I I !
+ T T T1T NN N[ -
T TN I
. N :
- " N
IR 1] R . ir)..ﬁ,.l/—, { 5 BN
T 17 RS .
— = TS ] L
T T TN |
T 1 LN )|
i) i 1. NJo N i
o I L ~d— = 4
— I . = T WSVl
- n ol m
N T g
K J!/. ! BT e
. o . e L
|
.y s o2 P -
/ .
I S i S
T+ ———]

RS ] I L H IEH »
T g T T
iy 1 F_ * % : . .
s v e i ¥ & i
— : T N
" m N
Il . > . M a d N P i NS LRSS P . .
N BEAD SRV S A 1] S L1 V1S3 NS KX s : ¢
T :

. . . : _ T ¥SVI

T RBES B ; 4

0T

It i LIV ITFRI U NN SRR S AN A NS (T [T CRSRE S0 S W |L30T RISt HIRER ERNEN BN NS N A

b

. e »,...m, HE
904 GBS SRSV LN LN (1VN LANAB OGBS




o=

n.mx JoJ sweafer(q opod HT~€ oandtyg
(ses/pel) IDKANDEHS

T°0

ot

GAIN (db)

ot

R L IS SO0 FEANY ARNNE TV AN ST RESHN NREN ) T
N 553 I BA N1 031 5311 EASHE D ETEE ARES + _
-4 —{- S804 FRERA 951 NE) 1 ARAN RN t t

T 1 ‘
e NI T a _ _ i
[ : R | . H
" =Y ] I P
U N ] T k
%. 1 T —
1 U e T ¢
] -] T R i | I :
t T
T T o UBE 1 i
R A T
T T T
: T 1
. 1
: -
. - -
11
[
Tt
}
) )| t
i t j
I 11 il I
: N R }
A — l Ry
N o —T1
o 4 TEHITETE
. I U
T t 9504 RERT!
H . " i I
Il i ! '
- : I T
s T T ™t t H
T L1 - T : T
i T - - T
: I o T 1 1
+ i . T 1]
1 u T
L T, [ T -
T
1 I
: +
1 i
1
- I
y i
1l 1] )
13
i 1
g 4 I
1 i HA
+ I 1 H
| i t
i i
) LiE, 4
1 U 1
1 t
- I f
1 1 ;

8

TPHASE (deg)7

&




.mQ, o < - - A Q
H JOI SUeJ-BI( 8DOE CT~¢ sanzTy

(o%s/pea) IoNENDTUI

(e}

GAIN_(db)
D

SR U SN S - o—
S -
-—
i p—
B . =

PHASE (deg)

.. x‘ﬁu ,,w

64

A it SRR . {1\

[l AT T A —————y
A —A € ¥svl

R

L v
Z Jsvl

L L.\., 0 70 SYRSE TRA NN ! ‘ il :: :__:::: 1




GAIN (db)

7 pue ¢ sjse], JO UOSTJIRAWO) QT-¢ &MIT]

(o9s/per) XONENDFUL o

J
I

V7 4

PHASE (deg)

(I8

65



3.8

Conclusions
Experimental data obtained from a coupled two-axis track-

ing experiment was analyzed by mathematical modeling of the human

operator's performance, The models were used to determine if

the operator could decouple the system, An analysis of variance

was performed to determine the significance level of the zero

frequency gain., Task difficulty and learning were evaluated
using the RMS tracking error. The analysis of human performance
in coupled two-axis systems with cross-coupling led to the
following conclusions:

1) The human operator can essentially decouple the system for
Tasks 2 and L according to prediction from decoupling
equations which were analytically derived. The decoupling
performance was better in Task 4 than Task 2 dﬁe to the
excitation signal r, being zero in Task 4,

2) The human operator was not able to decouple the symmetric-
ally coupled system for Task 3, Decoupling in Task 3 is
difficult since the operator must introduce a 180 degree

phase shift in generating Hab'

3) In Task 1, the human operator introduces some coupling in
the form of H_ . around a frequency of 6 r/s. This was con-
sidered a transfer effect due to the full factorial design
in which H_ was transferred from Tasks 2, 3 and 4 to Task
1.

L, Por all tasks, the describing functions Haa and be were
essentially identical, indicating that various degrees of
cross-coupling in the plant dynamics do not affect the

N 1 ry 3 k) .
human's major describing functions Haa and be.

5. Learning was evident for all tasks with Task 2, an asymmet-

rical task, being the most difficult,
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METHODOLOGY STUDY

Introduction

The objective of this study was to develop refined model
matching techniques which would be capable of precise mathematical
modeling of human tracking performance. Three basic modeling
techniques of the output error category were evaluated where the
pPrimary consideration was identification accuracy of model para-~
meters. The three techniques (continuous, iterative, and extra-
polation) were experimentally studied by determining their identi-
fication accuracy using second-order systems with known parameters.

In the continuous technique, a modified square law criterion
function was investigated to determine if identification accuracy
could be increased by utilizing a high parameter adjustment gain
when the model matching error was small. To increase the modeling
accuracy of the iterative technique, precise methods of calculating
the influence coefficients were evaluated. First-order extrapo-
lation was used in the extrapolation technique to determine the
effect of first-order prediction on parameter convergence., Model-
ing of higher order model terms by extrapolation was also investi-
gated. Conventional spectral analysis techniques of determining
transfer functions were extended to permit exact estimates of

human describing functions in coupled two-axis tracking systems.

The Continuous Model Matching Technigue

In general the model matching concept of system parameter
identification is based on determining a model which will opera-
tionally match the performance of an unknown system when both the
system and model are excited by the same input signale In using
model‘matchiné techhiques, the functional form of the unknown
system equations must be specified or assumed in advance. The
model form is then selected to approximate as closely as possible
e assumed form of the unknown system. To permit precise para-
meter identification, the excitation signal should have a band-
width which covers the dynamic range of the unknown systems Theo-
retically the signal input bandwidth must be infinite to obtain
exact identification but in practice this is neither possible nor
hecessary. For human operator identification, either random or
random appearing signals are used.
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Consider the system identification problem shown in Figure -1
vhere H represents the unknown system and M the model. Ascume tihat

the functional form I is of second order and can be desciibed by

o . N )
Y+ ey tayy = a4 ax 1)
vwhere
x is the system inpul
y is the system output

ay (i =1, 2, 3, 4) are constant coefficients.

Rewriting Equation (4.1) in operator form yields

+ a
4 x = H(p)x

<
1

a.,p
3;.

2

P+ ap+a,

vhere p is the differential operator %E .

Since M and H are assumed to have the same form, then z is rclated

to x by the equation

C(3p + au

X =M (P:a)x

p2+ap+o¢

1 2

Figure 4-1 The Model Matching Concept
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vhere x is the model input
z is the model output
C is the variable parameter vector

If the model matching crror ¢ is defined by
eE=2-Y

then tne model parancters will be identical to the system coef-
ficients when the model matching error is zero over the whole
frequeney bandwidth of the system being identified. In the con-
tinuous model matehing technique (Reference 5), a criterion func-
Lion T wiieh deoends on thie error g is minimized by an approximate
steepest deseenl wethod.  'The eriterion function must be positively
definite with o undque ninicw at € = 0 and with 3f/3e >0 for

e>C and ai‘/ae < O for ¢ «O0. A square lav criterion function satis-

ies these requirements and may be used in model matching, i.c.

= %82 S (k.2)

The netiod of :siteepest descent can be described by the

veeltoyr equation

L @ =-x Tle)

dat
vheve 9 is bthe gradient of £ and
I is a positive vproportionality constant.

Considering only the i'th component of the equation yields

& (@)= -Lﬁ- (4.3)
Implementation of tie teclmique on an analog computer requires
the generation of the partial derivatives shown in Equation
(4.3). Performing the differentiation indicated in Eyuation
(4.3) yields the result

'———a'[; =g lli (h'h)
&ty
wiere the sensitivity coefficient uy is defined by

Bz 8 uy

30y
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Strictly speaking uy is defined only when the ai are constant.
This restriction leads to a contradiction since, by Equation

(4.3) the product € uy
of ai' In this discussion the rules of differentiation will be

is made proportional to a rate of change

applied formally and the method will be termed "gpproximate
steepest descent". A more thorough discussion of this problem
is given in References 6 and 7. Substituting for the i'th
gradient component in Equation (4.3) and integrating over time
yields the value of the i'th parameter at time tl as indicated
by the equation

Y

ai('cl)=-k J suidt
[

The sensitivity coefficients are obtained by solving sensi-
tivity equations. For the i'th parameter the sensitivity equa-
tion is obtained by formally computing the partial derivative of
the model equation with respect to the i'th parameter. The
differentiation takes the following form for the al paramneter

. A -
2+ozlz+o.2z] —&é_l.[a3x+a4

Assuming that parameter cross coupling is negligible yields

ul + ozlul + Ctzul = =2

Solving the sensitivity equation obtained yields the sensitivity
coefficient,

w = -p z = -Jpz
(p2 +onp + az)

where J is an operator defined by:

1

J= Po + O + Q
2 ¥ P T
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Similarly it may be shown that

u2 = -Jz
= Jpx

u3 j9

uh'«: Jx

Observing that the influence cocfficients are interdenendent

gives the following interdependence relstions

Y = Py
u3 = Py

Since it has been shown that the sensitivity coefficients
may be obtained by solving the sensitivity equations, the con-
tinuous method may readily be implemented on a conventional
analog computer according to the block diagram given in Figure
k-2, Note that the model matching method is continucus in
that the parameters are continually being updated.

In practical applications of the technique it has been
Tound advantageous for stability reasons to introducec a rate

term into the criterion function in the manner shown below

£ =1 (e+ q@)?
The error rate coefficient g may be varied from zero to unity
to yield the proper amount of lead required. Use of a lead
term permits more rapid convergence and hence a shorter identi-
fication time. However, like all quadratic functions, this
criterion function has the disadventage of & shallow minimum.
This causes a relatively large uncertainty in the final para-
meter values, since the error criterion in »ractice does not
register small deviations of the narameters from the thecoreti-
cal optimum. An increase of the adjustment gain constant k
tends to reduce the uncertainty level but also tends to cause
instability of the adjustment process if the error and hence

the slope of the error criterion is large.
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A modified error criterion having a limited slope for
large deviations from the minimm was adopted to overcome
this difficulty. This criterion function fz and its slope
is shown in Figurc 4-3. It can be expressced mathematically

by
. 2 vy °
3 (e+qd) if -L <e+qg < L

» La
L |e+qe|—2— if | erqe | 2L

Independent choice of the breakpoint L, and the rate
cocfficient q permits adaptation of the error criterion
Tfor optimum model matching performance. For a given adjust-
nent gain k in Nquation (h.3) and breakpoint L, the limit of
l-:di'z/d(e-lqé) i5 determined from M =k L. If the adjustuent
gain is increased and the breakpoint 1. i5 decreased such that

M is constant, it follows the criterion function f apnroxi-

2
mates the absolulce value criterion

o= +q¢

l3 _'8 qel
without the attendant vroblems of switching transicnts at

e+ge = O and of linitl ¢ycles ocewring in tie adjustment

loops. afz
g
2 Netqs)
ML __
k (
1 |
|
=L 1 1 o
; +L (e+qe)
|
V__1M
. , k
L 0 4L (e+qe)

Figure 4-3 Modified Error Criterion 12 and Derivative
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k.3
k3.1

4.3,2

The Iterative Model Matching Technique

Introduction

The continuous model matching technique is mathematically
not precise, since the solutions of the sensitivity equations
(ui) are equal to the partial derivatives az/aa& only when the
@, are constant, Iterative techniques overcome this difficulty
by holding the model parameters constant during the computation
of the influence coefficients. Following such a computation,
the parameters are adjusted incrementally,

The time interval (T) during which the parameter influence
coefficients are being computed is one of the variables of the
iterative method., Early formulations of the iterative tech-
nique at TRW Systems (Reference 8) required repetitive process=
ing of the entire data record, as the computation interval was
made equal to the record length, During the present study,
computation intervals of only a few seconds were used, thus
making possible parameter identification during a single proces-
sing of a human tracking record. The formulation of the itera-
tive model matching technique is described in the following
paragraphs.

The Iterative Model Matching Technique

In general the output error form of model matching may be
formulated in either an open or closed loop manner to identify
the describing function of a human operator performing a compen-
satory tracking task, In open loop model matching (Figure h-h),
the model input is identical to the human operator input, while
in closed loop model matching (Figure N-S), the model input 1is
generated by differencing the reference input and the task dynam-
iecs response of the model, It may be shown analytically (Ref-
erence 9) that the human operator describing function will be
inaccurate if determined by the open loop technique for the casé
where the human operator output contains an appreciable amount
of noise which is not linearly correlated with the reference
input. In such situations, the closed loop model matching tech-

nique should be used.
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In using the closed loop technique, the human operator is

assumed to behave as a linear second order system describable by
Y+ey+ays= 8.X + & x y(0) = y(0) = 0

where X is the human operator input
y is the human operator output

a; (1= 1,2,3,4) are constant coefficients

On the basis of this assumption, the model is constructed to

have an identical form given by
o . ot ] .
24Oz + Gz o= 0o + OX z(0) = 2(0) = O

where x' is the model input
2z is the model output

a, (i = 1,2,3,4k) are variable coefficients

The model and human operator outputs are then differenced to
form the model matching error. A steepest descent method
is used to reduce the model matching error to zero and thus
identify the parameters of the human operator.

In the iterative technique, the parameters are updated at
the end of each computation interval by an incremental correc-
tion calculated during the iteration period as shown in the
following equation

"1(‘1 +1) ai(a) ' I‘,,i(.a)

where J .' J'th diteration interval
Iai(j) =z incremental correction in the ai parameter

The incremental corrections for each parameter is calcu-
lated using a steepest descent method which requires that the
incremental change be made proportional to the negative of the
local gradient of a criterion function f, If only the i'th
parameter is considered, then the steepest descent method re-
quires that

[



1o, () - x gg(f—’ (t.5)

where k is a positive proportionality constant,

For the iterative technique, the criterion function has the

form
(3+1)T
ro | N
jr

where T is the length of the iteration interval. The rate term
(qé) used for stabilization in continuous model matching is not
needed here since the parameter adjustment loop is not closed
during computation of the incremental correction,

If the partial differentiation indicated in Equation (4.5)
is performed, then the following integral equation is obtained
for the calculation of the incremental parameter correction

(3+1)T
Iai(J) = -k J\e %&f dat
JT
The influence coefficient %é' = ug is implemented directly

on an analog computer by the finite difference approximation,

_ A%y z(ai + Aai)-z(ai) Qi -z
Yy o F Ror, = T

1

The term Qi is generated by using a perturbed model, For the

o, parameter, €, 1s given by
C = ?3I)+ ah
=1 2
P + (al+ wl)p+ az

Similar perturbed models are used to generate the perturbed
model outputs { for the other parameters.

The closed loop iterative model matching technique was
implemented on an analog computer as shown in Figure 4-5. An
open loop formulation of the iterative technique is shown in

Figure 4-L for comparison purposes. An experimental study of
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the iterative technique was performed on systems with known
parameters and the results are presented in Section 4.5.2.

It is also possible to caleulate the influence coefficients
in the iterative technique by solving sensitivity equations.
These equations were derived in Section L ,2 for the open loop

formulation and are repeated here for convenience;

ul = - Jpz
uz = ~dgz
u, = J

) px
Y, = Jx

1
P 2 + P+«
Q%

where J =

Since the o parameters are held constant during the computation
interval, it follows that J now becomes only a function of time
and consequently the influence coefficients may be determined
exactly, In theory this method of influence coefficient deter-
mination is superior to the finite difference method as the
latter method approximates the true partial derivative by a finite
difference approximation, Hence the iterative technique employ-
ing this type of influence coefficient determination should pro-
vide better system identification accuracy, A block diagram of
the open loop formulation is shown in Figure 4-6, The experi-
mental study performed on this method is described in Section
k.5.2,

The iterative technique utilizing sensitivity equations
for influence coefficient computation may also be formulated in
a closed loop manner, Figure 4-7 illustrates the closed loop
model matching concept where H is the unknown system element
and M is the model of that element., The influence coefficients
are determined by solving the influence equations of the element
M. If the model M is describable by

e . " '
z+alz+azz=a3x+a,+x

then it may be shown that the influence coefficients are

T9
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where u; = Eéf (i = 1,2,3,4)
i
J = 1

=z .
P+ op *ta,

The partial derivatives of x' with respect to ai may be related
to the influence coefficients in the following manner,

Since the signal x' is defined by the equation

& T (1 = 1,2,3,4)

as r is independent of Q. Because ¢' is defined by the equa-

tion

c! 2 Gz
then
dc! 9 .
Sa- ¢ G ECEX = Gui (i = 1,2,3,4)
1 1

Consequently the required relation is given by

S5 F -Gu, (i =1,2,3,4)
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The influence coefficients can now be written in the following
simplified form,

-Jp
=Ty 2
U, = ~J Z

1 +MG
u, = JP 1
3" TFm X
Uh: J x!

1 + MG

As in the open loop case, the influence coefficients are inter-

related by the equations

u

1 = Py
U.3 = pU.)4

The closed loop iterative technique may now be readily imple-

mented on an analog as shown in IFigure 4.8,

Figure 4-7 The Closed Loop Model Matching Concept
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Lely The Extrapolation Technique

LeL4el Introduction

One of the difficulties of the continuous model matching
technique is that the gradient cannot be defined in a rigorous
manner unless the parameters are constant. This problem is not
present intheiterative technique, where the parameters are held
fixed during each iteration interval and thus the solution of
the sensitivity equations yields well defined gradient components.
In contrast with the instantaneous criterion function of the form
£f=3 [e(t)]2 used in the continuous method, the iterative tech-

nique uses an integrated criterion function of the form
L,
i

Pe

t.

i

| Evidently, while f depends on the time history of the parameters,

+ T
3 [e(t)1? at

F depends only on their value during the i-th iteration interval.
The extrapolation technique presented in this section is

based on a first-order extrapolation of the matching error. Ais

a result, the criterion function becomes an ordinary, algebraic
function of the parameters (i.e., f depends only on the instan-
taneous values of the a; and not on their entire history), and

the gradient vector Vf can be rigorously defined. The resulting
strategy is again iterative, even though an instantaneous criterion

i function is used.

Le4e2 The Extrapolation Technique

Consider the parameter identification problem shown in Figure
L-1 where H represents the unknown system and M the model. The
model output z may be expanded in a Taylor's series about the

initial conditions aio as

z(ai,t) = zo(t) 4—}; uio(t) &ai(t) + higher order terms

i

8l




where zo(t) A z(ai,t

s = Q.
1 10

?
Uio(t) 8 za:ai’t)
XC
* a, = a,
1 10

The extrapolated parameter values are obtained from

ai(t) =a + aai(t)

where the increments éai(t) are calculated using a steepest
descent method. Note that the computation of uio is theoretically
exact since the model parameters are held fixed at their initial
values,

Using the first two terms of the expansion for z yields the
first-order extrapolation

z) = z<>+z“io bay
i

The corresponding first-order extrapolation for the model matching
error is

vwhere ¢ = z -y
o o

If the square law criterion function

2

= 4
f 281
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is used, then the method of steepest descent can be used to compute
the parameter increments éai which minimize f., The required

equations are

_d__ = -k of 1= 1,2,eeene
o (%) eay) ’ sCseeelt

The gradient components may be evaluated as

3
_3f . 1 e
a(wi) laiaai) 1io0

assuming that cross-coupling terms are zero. Consequently the
quantity wi(t) may be evaluated from the integral equation

¢ +t
o
wi(t) = -k J e,u; dv (446)

t
o

The integration shown in Equation 4.6 may be performed until
éai reaches a steady state value at which time the initial con-
ditions o, may be updated by the amount éai. Another integration
is then performed and the process is repeated iteratively until
the steady state value of 60,.1 approaches gero. Figure 4~9 illus-
trates the analog computation implementation for the case where
the system H may be represented by a second-order equation of

the same form as discussed in Section 4.2
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Effect of Excitation Bandwidth on Parameter Identification Accuracy

Introduction

The accuracy of parameter identification of unknown systems
by a model matching technique is primarily determined by the fre-
quency bandwidth of the excitation signale. Inadequate excitation
bandwidth generally results in poor parameter identification
accuracy. A bandwidth study was performed on the model matching
techniques described in Sections 4.2 through 4.4 to obtain a quan-
titative measure of the degradation in system identification
accuracy due to insufficient excitation bandwidthe. The secondary
consideration in the study was a comparison of the different model
matching techniques with the ultimate goal being the selection of

an optimum technique.

Procedure

The study was performed by ideﬂtifying the parameters of a
second-order linear system with known parameters, Band-limited
white noise was used as the excitation signal to the systeme. This
signal was obtained by filtering the output of a gaussian noise
generator with a third-order filter of the form

Klwa

(s + w )(s2 + 08 WS T W 2)

f f by

F(s) =

Filter cutoff frequencies, Wes of 20, 3 and O.4 rad/sec were used
in the study. The study was conducted using the the systems A
and B whose transfer functions and Bode diagrams are shown in
Figure 4-10., The transfer functions of system A and B were chosen
to approximate typical human describing functions obtained in

modeling human tracking response. Continuous, iterative and extra-

polation model matching techniques were evaluateds Both open and
closed loop formulations ﬁere used in evaluating the iterative
technique. Open loop formulations only were used in investigating
the continuous and extrapolation techniques.
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Le5¢3 The Continuous Technigue

The continuous technique described in Section 4.2 was imple-
mented on an analog computer in an open loop formulation and used
to model the known systems A and B. The modified error criterion
function was used. Use of unequal parameter adjustment gains ki
substantially decreased the convergence time. That is, the para-
meter adjustment rates were equalized by increasing the adjustment
gain of the less sensitive parameters. Farameter convergence rates are
analytically treated in Reference 12. Table 4-1 lists the operational
constants used for the continuous technique where these constants were
chosen to yield the optimum convergence time. Initial conditions for
the parameters ay through a, were 10, 20, 4 and 4 respectively.

Table 4-1
Operational Constants for the Continuous Technique
System A System B
Input Bandwidth
" (rad/sec) 20 3 Oely | 20 3 O
kl 8 2 L 2 051 4
k2 L0 L 8 10 1.0| 8
Adjustment Gains
k3 20 40 |10 5 10 20
kl+ 100 L0 |10 25 10 20
Limit on Erfor Term 10
€ + qe
Error Rate Gain q O+5 sec

Each system was identified twice for each excitation frequency
and the model parameters measured at the end of the model matching
run. The a parameters were then averaged and converted to transfer
function form. Percentage errors were calculated and these are
tabulated in Table 4-2. In general the overall identification
accuracy increased as the excitation bandwidth increased. The

accuracy of the zero frequency gain parameter K was least affected




Teble k-2 Percentage Modeling Errors for the Contimuous,
Iterative and Extrapolstion Techniques

: ; ; Run

System ( wp | K (¥, ko | ¢ ¢ F | Length

C i Minutes )
% 20 +1.3 | -1.5 +0.9 | +3.0 3.7 5
Continuous A | 3 -0.3 | -1.0 -0.7 |-5.2 5.4 5
Open 1 o.h +0.7 “11.5 -11.6 “ho-3 h‘3.5 5
Loop T 20 | +0.7 | +1.5 | 0.8 |-3.0 | 3.5 } 5
B | 3 0.0 i 0.0 | +0.3 |=-5.6 5.6 5
¢ O.4 | -1.0 ' 0.5 | +1.3 }10.7 |10.8 : 5
Iterative | T 20 | +4.0 | -8.5 | +L.1 |-b.5 10,5 ; b

mg:ir::ce - A3 -3.3 | +8.5 | +7.8 ¥IM.9 | 19.1 3.5»_
Open : i 20 -2.3 | +1.5 . +2.5 |-1l.1 3.9 . b
Loop i 3 -1.3 #23.0 {+15.0 §38.2 471 0 b
mﬁgir::ce i 3 !-bo.2 #95.0 | -1.6 F30.6 |10k 6
Closed 20 |+15.3 |+3.0 | -0.5 $11.1 {19.2 ! 6
Loop B 3 parameters would not cpnverge o
Iterative 20 +0.0 | 0 | +0.3 |-0.1 | 05 | 2
(I:gg:ﬁ: " A 3 +43.0 | -7.0 | +0.1 |-5.7 | 9.5 | 2
Open B 20 +8.9 |-10.2 | +1.3 {-0.6 [13.6 : 5
Loop 3 +12.9 | +0.2 | +1.b ¥13.0 184 | 2
Ext: 20 -6.9 H11. -1.5 |+2.2 | 13.7 2
pol::;m A 3 “.6 5. +2.2 4‘0-5 7." 2
Open 20 | +6.0 | -7.6 | #1.0 |-0.1 | 9.7 2
IM . B 3 +18.8 -2903 +h’03 "12.5 3702 2

F = ‘\[Z (errors)z‘ in %
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by the change in bandwidth. However the error in the damping ratio
parameter { increased sharply as the excitation bandwidth was
decreased, indicating that there was insufficient energy at the
vieinity of the poles to adequately define the damping ratio for
low excitation bandwidths. It was concluded that excellent identi-
fication accuracy could be obtained if the excitation bandwidth

was 20 rad/sec. This bandwidth is beyond the highest break point
frequency in the Bode diagrams for systems A and B shown in

Figure 4-10,

The Iterative Technique

The iterative technique described in Section 4.3 was experi-
mentally studied by modeling the known systems A and B in both
open and closed loop formulations. For this study of the iterative
technique, the influence coefficients were computed by a finite
difference approximation as discussed in Section 4.3. Unequal
parameter adjustment gains ki were again used to equalize the
adjustment rate of the parameters. In addition the maximum para-
meter correction per iteration was limited to reduce cross-coupling
during parameter convergence, Specifically the maximum parameter
corrections per iteration were limited to 1, 2, 1, 1 for parameters

through a, respectively. Table 4-3 lists the operational con-

a
s%ants used ?or the iterative technique where the constants were
chosen to give an optimum convergence time.

An identical experimental procedure to the one described in
Section 4.5.1 was used to obtain the identification accuracy of
the technique, The identification accuracy of the open loop formu-
lation is comparable to the open loop formulation of the continuous
technique as shown in Table 4-2. However, the iterative technique

possessed a shorter convergence time,
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Table /4~
Operational Constants for the Iterative Technique

Open Loop Closed Loop
System A B A B
Input Bandwidth
(rad/sec) 20 3 | 3 20 3 20 3
k, 8 8 8 8 28 28 28 10
Parameter Adjustment X2 [ 96 |48 |88 |48 |168 68 p68 | 60
Gains ky L A VA VA I VA I VAR I VA A
kh 2 22 124 2 84 8L 8L 30
cal Ol Ooly | Ouly | Oolyfl Oek| Oohy| Oo4 | Ok
[ 2ely 12| 12 | 1.2 1e2] 1le2| 1le2 | 1.2
Parameter Offset
1313 0.2 02| 02 | 0u2] 0e2] 0e2] 062§ 0.2
mh 1.2 le2] 1e2 | Le2] 1le2| le2| le2 | 1le2
a0 10 10 (10 10 16 16 16 16
Initial Parameter 20 20 20 20 oy 32 32 32 32
Values a5 L A A AR A A B A
ab,O I L 4 4 L 4L 4L 4
Iteration
Interval T l.5 secs l.5 secs
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In the closed loop formulation, the identification accuracy
was much poorer than for the open loop case as shown in Table 4-2.
The cause of this inaccuracy may be explained by comparing the
system transfer functions of an open and a closed loop system
(Figure 4-7). For an open loop system, the system function is

Y = H
x
while for the corresponding closed loop system, the system function

is

In considering the frequency response for those frequencies for
which the magnitude of GH is significantly less than unity, the
transfer function will be approximately

T =n

r
which is the open loop transfer function. For those frequencies
for which the magnitude of GH is significantly greater than unity,

however, the transfer function will be approximated by

y_H _1
F GHT G

This function gives no information about the nature of H, the
system which is to be determined, Consequently H may only be
determined accurately when the magnitude of GH is significantly
less than unity.

For the closed loop system studied, the plant system function

52
G(s) = s(0.38 + 1

was

9k




Thus, for low frequencies the magnitude of GH will be greater than
unity, and for high frequencies, less than unity. For typical human
responses the crossover frequency is about rad/sece It is to be
concluded that the low frequency parameters, K and Tl’ cannot be
accurately determined by the closed loop methods The computer
results in Table 4-2 indicate that this is the case.

In addition to the accuracy problem discussed above, the
closed loop method also has the disadvantage of producing instability
in the closed loop of the model and plant dynamics. Instability will
result if during the adjustment process the model parameters assume
values such that the phase margin becomes negative. This form of
instability has frequently been observed in modeling of human data.

The iterative technique utilizing sensitivity equations for
true influence coefficient computation was also experimentally
studied. This technique is described in Section 4.3 and in this
study the open loop formulation was used. Unequal parameter adjust-
ment gains and limiting of the maximum parameter correction per
iteration were again employed to optimize the performance of the
technique. Operational constants used for this technique are shown
in Table 4-4. For the parameters ay through ah respectively, the
initial conditions were 16, 32, 4, 4 and the maximum corrections

per iteration were 1, 2, 1, and 1.

Table 4-4
Operational Constants for the Iterative Technique

Using True Influence Coefficients

System A System B
Bandwidth Cutoff
Frequency (rad/sec) 20 3 20 3
kl 10 10 5 5
k2 200 40 40 20
Adjustment Gains

k 10 10 5 5

3 .
k, 10| 10 |10 5

Iteration Interval l.5 sec
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Figure 4-11 Typical Parameter Time History for the Open Iloop Itera-

tive Technique Using True Influence Coefficients
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The identification accuracy of the technique was determined
using the experimentgl procedure described in Section 4e5e.1l.
Table 4-2 shows that the identification accuracy obtained was
excellent. The convergence time was in the order of 30 seconds.

A typical parameter time history is shown in Figure 4-11.

The Extrapolation Technique

The extrapolation technique as described in Section 4.4 was
formulated in an open loop manner and experimentally studied
using the known systems A and B. Unequal parameter adjustment
gains were used to equalize the adjustment rates of the parameters,
Using the same initial conditions as in the tests of the iterative
technique resulted in an unstable set of parameter corrections
aai. However if the initial conditions were sufficiently close
to the true parameter values such that an accurate extrapolation
could be performed, then stable parameter corrections 5ai were
obtained. Consequently the technique was studied by using the
same initial conditions as for the iterative technique but limit-
ing the computation interval to 5 seconds to maintain stability.
Operational constants used in studying the technique are shown

in Table 4~5. The initial conditions of the parameters a. through

1
o were 16, 32, 4 and 4 respectively.

Table 4-5

Operational Constants for the Extrapolation Technique

System A System B

. Bandwidth Cutoff
Frequency (rad/sec) 20. 3 20 3
kl 50 LO 50 20
Adjustment Gains kp | 4O 400 1400 | 8O

50 40 50 | 10

ky
kl+ 50 4O 50 10

Tteration Interval 5 sec,
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The identification accuracy of the technique was determined
using the experimental procedure described in Section 4e5.1.
Table 4—~2 indicated that the identification accuracy was good. A
convergence time camparable to the iterative technique using the

theoretically exact influence coefficients was obtained.

Closed Loop Model Matching With Prefiltering
In Sections L4.5.3 through 4.5.5 it was shown that the accuracy

of system identification was poor if the excitation bandwidth was
insufficient. Manual tracking systems are commonly analyzed
using disturbance functions consisting of a very narrow primary
spectrum whose level is much greater than the level of a much
vwider secondary spectrum. Since the narrow primary spectrum is
dominant, then the accuracy of system identification will suffer
due to insufficient excitation bandwidthe This inaccuracy was
measured for a known system using the same excitation signal as
was used in the experimental design described in Section 3.3.

The excitation signal shown in Figure 4-12 was generated using
a gaussian noise generator and appropriate filters. A known system
(System A) with a transfer function similar to that of a human
operator was implemented on an analog computer. Using the iterative
technique with the finite difference influence coefficient calcula-
tion and the excitation signal shown in Figure 4-12, the parameters
of System A were identified with the accuracy shown in Table 4-6,
These accuracies are unacceptable for model matching. To overcome
this dilemma, the excitation bandwidth to the model matcher was
increased by prefiltering.

Figure 4-7 of Section 4«32 illustrates the basic closed
loop concept of model matching. If the input signals to the model
matcher are prefiltered by a filter F to increase their bandwidth,
then the model matching scheme illustrated in Figure 4-13 results,
All operations shown in Figure 4-13 are functions of the differential
operator p and all signals indicated are functions of time. The
signals y' and 2' are related to the disturbance signal r by the

following equations
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HF
| =
yt =k <1+Hc>r
Z'= -—-——-M rt = MF r
T+ G 1+ MG

Consequently the model matching error is given by

(__u H

A A VIR ¢ 1+HG>Fr

Thus model matching may be performed as before since the error e!
approaches zero uniquely as M approaches H, provided of course that
the signal Fr is non-zero.

The effect of prefiltering on the system identification
accuracy of System A was measured by using the input disturbance r
as before., Acceptable identification accuracy was obtained as
shown in Table 4-6. Note again that the parameters K and Tl are

the least accurate for the same reasons as given in Section 4e5e4e.

Table 4-6
Effect of Prefiltering on Model Matching Accuracy

Unfiltered Prefiltered
Percentage Fercentage
Error Error
K - 104 + 11.3
System Tl -1560 - 10.5
Parameters o Y + 0.7
¢ + 94 - 3
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Figure 4-13. Concept of Closed Loop Model Matching with Prefiltering

101




4.6  Parameter Indeterminacy
4.6.1 Introduction

Parameter indeterminacy difficulties can arise in system
identification by model matching techniques. If the excitation
signal bandwidth is insufficient or if the system being modeled
is actually of lower order than the model, incorrect parameters
may be obtained. However, the model obtained will be able to
duplicate or match the output of the unknown system and conse-
quently the system identification is unique but the parameter
identification is not. 3ituations vhere parameter indeterminacy
may arise are discussed in the following paragraphs.

4,5.2 Becond Order 3ystem with Insufficient Excitation Bandwidth

Consider the second order system equation
Y+ ey tay= a3x +a)x
having the transfer function
a.s + a
- 3 b (&.7)

g2 +a.s5 + a
= 1” 2

(
¢

3
S

Ed L]
AN

For input signals of low frequency Equation (4.7) is

approxiﬁated by

~ a.,5 + a
Y(s) ~ 3 L (4.8)
X(s a,s + a,
If the known parameters have values related by
a a
B . N (4.9)
&1 2
Equation (4.7) simply becomes
Y(s)
X(s) ~ Cl
where Cl is the zero-frequency gain of (4.7).
The corresponding model equation is transformed
similarly into
Z ~ a.s +
Lo(gye gt (1.10)

@575,
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L.6.3

A set of system parameters which are related in sccordance
with Equation (4.9) cannot be uniquely identified by model
matching because the requirement

Z(s) = Y(s)

can be satisfied in good approximation by any sets of para-
meters (:ri related by

i.e., the o~parameters will not necessarily be equal to the
known a-parsmeters. TFor high excitation frequencies the
approximations (4.8) and (4.10) are not valid and hence the

indeterminacy of parameters ¢, will disappear.

i
Figure U-1l4 illustrates a plot of model parameters in

the a., a, plane and in the ¢, ¢, plane. The lines G, =
1’ 73 27 Tk 3

Clal and O‘h = Cla2 are loci of indeterminate parameter pairs.

The a; actually obtained by the computer depend largely on
the choice of initial values ai(O). In practice, even system
parameters located in the vicinity of these loci can cause
indeterminacy problems on the computer. In the presence of
computer noise, a continuous drift of the parameters along
the loci, or in their vicinity, is to be anticipated.

Second Order System with Inherent Indeterminacy

Even with sufficient input bandwidth a parsmeter in-
determiha.cy condition is possible. If the known parameters
have values related by

a, o a
2 = 23 + k4

w

Equation (4.7) reduced to

<
2]
s

X(s L &na
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Model matching will only be able to develop the relationships

3 3
=2
G By
=23 + %
Ct)+ C€3

Thus, only &, may be determined uniquely.

3
4.6+ First Order System with Inherent Indeterminacy

A similar problem of paraméter indeterminacy can also
arise in g first order model matcher. If the system and

model equations are given by

y + bly = bzx + b3x

+ Blz = Bzx + B3x

Ne

having the transfer functions

Y () _(bzs + b3)
X YW (s + blS
and

R

respectively, parameter indeterminacy will occur in model

matching if the system parameters are related by

In this singular case the transfer function is frequency-

independent having the gain C_, at all frequencies.

2
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4.6.5 Excitation with Single Frequency Sinusoid

A parameter indeterminacy will arise in the modeling of
any system if the excitation signal is a single frequency
sinusoid. For example, if a second order system is being
modeled, then only two of the four parameters may be uniquely
determined. A complete discussion of this type of indetermi-

nacy may be found in Reference 5.

Y = (e} =C (04
aQ C3/ C1C(l au | )+/ 1“2
> , [och(o),az(o)J ,
/
/ /
/ /
/ /
/ /
/
/
/ , ’
! [a(0), o, (0)] ,
/
/ /
/ /
0 @ 0 Y2

Figure 4-14 Ioci of Indeterminate Parameter Pairs in Qs a.3

and Gy ah Planes
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L7 A Matrix Formulation of the Spectral Technique for the Coupled System

4u7.1 Introduction

Selected portions of the experimental performance data were
analyzed using spectral analysis techniques to obtain an independent
jidentification of the human operator's frequency response. Since
the spectral technique used in this analysis contains no approxi-
mations of the type made in using the iterative model matching
technique, then the accuracy of the frequency response obtained will
be primarily limited by the number of lag values and data points
used in the digital spectral analysis.

L4e7.2 The Spectral Analysis
In the two-axis input coupled tracking system shown in Figure

4-15 an asymmetric lattice filter is used to represent the human

operator. A spectral analysis is required to uniquely determine
each of the four elements of the lattice filter model.

Figure 4-15. Signal Flow Diagram of the Two-axis Input Coupled System
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The two-axis system configuration depicted in Figure 4-15
may be simplified by representing the human operator model and the
plant dynamics by 2 x 2 matrices as shown below,.

H= Haa. Ha.b G = Gaa C'a.b
Hba be Gba. be_

Similarly the signals of the system may be represcnted by the
following vectorss

r=[r| x-= ]I_xa y= [v,] n=[n, c= [ec,
b | % 4 " %

The system shown in Figure 4-15 can now be represented in the
simple form shown in Figure 4-16.

Figure 4-16. The Simplified Two-axis Input Coupled System

It may be shown that the vector x is related to the forcing vectors
r and n by the matrix equation

x=(I+ceH)7 r - (I+a) e

where I is the identity matrix. The cross spectral density matrix

between the vectors x and r can be evaluated as

-1
S = (T+GH)™s (4e11)
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since the vectors n and r are uncorrelated. Solving matrix
Equation 411 for the matrix H yields

-1 -1
H=G [:sm,sxr —I:[ (4412)
where
Srr = sr r Sr r
aa ab
Sr r Sr r
B b a b b_
s = (s S 7]
xr X r Xxr
a a b
S T S r
N *v'a X b |

Since the spectral matrices Srr and er may readily be evaluated
from the known vectors r and x, then H may be evaluated without
any approximations. Note that this evaluation does not require
that the off-diagonal elements of the spectral matrix Srr be zero.
The matrix formulation developed above may easily be extended to

higher-order systems,

Spectral Program Description

Computation of power spectra of continuous data is performed
at TRW Systems by using the IBM 7094 correlation and spectral
analysis program. The continuous data must be first digitized and
converted into a 7094 compatible format before the spectral analysis
program may be run, The analog data records used in the spectral
analysis were of 6 minutes duration and were prepared by sequenti-
ally recording l.5 minutes of data obtained in each of the 4 repli-
cations for a given task. Only the data in the final performance

session was used,
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The program evaluates power spectra by first computing the
correlation functions and then evaluating their Fourier transforms.
Basically, the cross correlation function between two variables
x(t) and y(t) is defined by

N-1
R (%) =% Z x(nT)y(nT-t)

n=0

where T is the sampling period, N is the total number of data
points, and v is the lag value. Clearly, t is always equal to an
integer number of sampling periods.

The accuracy of the power spectra (and consequently the accur-
acy of the frequency response) is primarily dependent on the number
of lag values and data points used in the analysis. In this
analysis the net sampling frequency was 12.5 samples/sec and the
number of lag values (m) was 250, The resultant frequency resolu-

tion Af is given by:

1
Af = m = 0,025 cps

where At is the net sampling period. For 6 minutes of data sampled
at a rate of 12.5 samples/sec, the number of data points n is 4500.
However, the accuracy of the frequency response is also related to
the coherence between the input and output signals (Reference 10),.
The calculation of the confidence bands on the frequency response

is complex since the human operator's coherence is frequency de-
pendent. For illustrative purposes only, the 90% confidence bands
on the amplitude ratio and phase were calculated for one task at a
frequencj of 0.2 cps. At this frequency the coherence between r and
y was 0,731 and the resultant frequency response was

505 + O.1

H(jle26) =
13° + 12°
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where the amplitude ratio is expressed as a magnitude. A complete
evaluation of the confidence bands over the frequency bandwidth of
interest was considered to be beyond the scope of this study.

Ideal spectral determination requires that the individual
spectra be uniform functions of freguency. Non-uniform spectra
were obtained from the human tracking experiment and consequently
prevhitening was used to improve the accuracy of the spectral
determination.,
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4.8

Comparison of the Model Matching and Spectral Analysis Techniques

In Section 3.7 approximate human operator models were ob-
tained to describe human performance in a coupled two-axis sys-
tem using the iterative technique as described in Section 3.k.
Since the spectral analysis technique described in Section 4.7
will yield a human operator model without approximations, then
this technique was used to check the approximate models obtained.
Specifically the average performance of one subject in Task 2
over four replications in the finsl performance session was
checked in this manner.

The iterative technique was used in a closed loop fashion
to obtain Haa’ be and Hab' The describing function Hba. was
obtained in an open loop manner. Figures 417 through 4-24
show the frequency response of the approximate iterative models
obtained. For the same data, a set of approximate models was
also obtained using & closed loop spectral analysis technique
vwhere the describing functions were computed from the equation

S
r.y.

EE R " i=8 0 (4.13)
erJ J = 8., b

In Equation (k.13) s, Wi denotes the cross power density
spectrum between the signals r 3 and ¥y while Hi 3
the required describing function. The frequency responses of
the approximate spectral models thus obtained are shown in
FPigure 4-1T7 through 4-2h.

The approximate models obtained above were compared with
theoretically exact models determined by solving the matrix
equation

represents

o a-1 -1
H=G [srrs:Cr -I] (b.14)

vwhere the matrices in Equation (4.14) are as defined in
Section 4.7.2. Figures 417 through 4-2U4 show the fregquency
response of the correct spectral models obtained.
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In general both approximate models compare favorably with the
correct spectral models and consequently the conclusions drawn
from the approximate iterative models in Section 3.7 are vali-
dated. large deviations in both the amplitude ratio and phase
responses exist above a frequency of 4,0 radians/sec. These
deviations are due to the closed loop coherence functions being
very small above 4.0 radians/sec. Figure 4-25 shows a typical
coherence function cybra for the describing function Hba'

For the describing function Ha

b
was near zero over the complete frequency range. Since the

, the coherence function Cy,ry

accuracy of any spectral analysis technique is strongly de-
pendent on the magnitude of the coherence (Reference 10), then
large deviations will occur in the amplitude and phase fre-
quency response vhenever the coherence is small. In this
context the coherence function between two signels x(t) and

y(t) is defined by the equation

e lsxy(jw)lz
wy @)= S @ 8_To)
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Approximate Computation of Human Time Delay

Introduction

One of the major limitations of the model matching methods
currently in use is the difficulty encountered in the determination
of time delay (reaction time) in human pilot response. Existing
methods of implementing the time delay term in the model equation
are in general laborious or have extensive equipment requirements.
This section of the report describes the experiments performed to
evaluate a proposed technigue to determine time delay by a first
order extrapolation. The proposed method is completely described
in Referencell. A considerable savings in computer equipment
requirements is effected since implementation of a time delay term
in the computer circuits is not required by this scheme. A brief
recapitulation of the method is given in the following paragraphs.

Consider for example the model of the human operator with the
input signal delayed t seconds

¥+ 0.12 +a,3 = aBt(t--r) + ahx(t—-r) (4415)
where
x = input signal to the human operator
T = time delay
z = output of mathematical model
a, = model parameters, i = 1,2,3,4

i
The first order extrapolation in the vicinity of tv = O yields the

equation

9z

zl(t,r) =25+ ﬁg T (4416)

(where zg = szo) is obtained from

L7 alio + a5, = a.3i(t.) + ahx(t) (4417)
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The partial derivative S;g is defined as the influence coefficient

u which is obtained from the solution of the equation

ﬁfr + a’lﬁ-r: +tau = - a33f(t) - a.hi(t) (4418)

since in the vicinity of v = O,

dx
s_a:(t_t) o~ R = % (h-lg)

If v is approximated by the first order extrapolation Ty then an
improvement should be realized in the model matching accuracy as

indicated by the extrapolated error signal
e = (zl—y) = zy + T U Y (4420)

where y is the output of the system to be modeled. By using the

error squared criterion function
2
f=he (4o21)

the approximate steepest descent method yields the following expres-

sion for =
1 . aE
e -k ke X
2 k a7, & 3, . (4e22)

=% (4+23)

in the vicinity of T = Q.
Equation 4.22 is combined with the definition of &) (Equation
4.20) and Equation 4.23 to give the expression

T,l ==k gju_ =+ k g2, (Le244)

The simultaneous solution of Equations 4,18, 4.20 and L4.23 yields
the desired extrapolation approximation. A computer block diagram

is shown in Figure 4-26,
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Figure 4~26 Computer Block Diagram for the Determination of T

Experimental Procedure

The approximate computation of the time delay was studied in
both an Moff" and Yon" line sense. In the "off line" case, the
T determination loop operates in an open loop manner as its

operation does not influence the value of the model parameters Gy
However in the Yon line" case, the T determination loop does
affect the value of the model parameters. For *on line" operation,
the extrapolation error signal &) = ;¥ is used to determine the
oy parameters rather than the error € = zo-Y used in "off line"
operation. The experiments performed to evaluate the T deter-
mination scheme involved the testing of both known systems and
human pilot data.

The test configuration was constructed as shown in Figure 4=26.
The system to be modeled consisted of the second order differential
equation

.y. + alz; +ay = aBJ.c(t-'r) + ahx(t-'r) (4425
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where x(t) is a low frequency excitation signal. The pure time delay
v was achieved by the use of a tape recorder delay loop., The model
to be obtained was constructed in the form

2+ c,li +a,z = a.31'c +ox (4e26)
No specific allowance for time delay was included in the model. The
extrapolation method was expected to indicate the existence of time

delay in the system tested without its actual implementation in the model.
The experiments for modeling of known systems consisted of continuous

"on 1ine™ and "off line" operation, as well as iterative "on line"
operation, The experiments for modeling of human response were

performed using both continuous and iterative "on line" operation.

Results

For the initial test configuration, the ay parameters of the
model were fixed at the values of the corresponding test Equation
(4.25) coefficients given in Table ;.7,

Table 4-7
Known System Coefficients

I Coefficient | Value |

ay 12
22 2
83 15
a.‘0 10
T 0.4 sec

For this "off line" determination, the resulting value obtained for the
extrapolated time delay was T - «331 sece For an excitation frequency
in the neighborhood of 1.5 rad/sec, the estimated extrapolation

error for the technique should be approximately 18% (Reference 11).
This agrees closely with the actual error of 20.9% in the value of

the time delay obtained.
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The "off line" test of the parameter extrapolation was now per-
formed with the ay parameters adjustable but without the time delay
term affecting the model. In all cases, the values of T obtained
were near zero (Table 4-8). It appears that with no feedback to
the model from the T determination loop, the effect of time delay
was concealed in the values of the a; parameters. Since the time
delay term was not explicitly included in the model structure, its
effect becomes absorbed by the ay parameters for “off linef operation,
These results prompted the *on line" study in which the extrapolated
error signal & replaced the error signal ¢ for the determination of
the ay parameters, This constituted a feedback signal from the T
determination circuit which would reduce the compensating effect of
the Moff line" parameter adjustment. However, an improvement in
the accuracy of the T, determination was not realized.

Table/-8

"Off Line' Determination of Known System Parameters

Run No. ay ay aq a, T x(t)
1 5.1 | 19.8 | -3.0 17.8 | 0.00 | Run 709
3 8.6 0.4 -1.3 16.9 0.01 Run 711
Values of
Known System 12,0 20,0 15.0 10.0 ol -

In an effort to evaluate the concept of the first order extra-

polation and enable the determination of time delay in human systems,
an iterative strategy was used., The adjustment loop for the determi-

nation of extrapolated v was disabled. Fixed values of T, Were then
introduced into the model using the Mon line" strategy previously
described. For each value of T selected, the integral of the extra-
polated error signal & and the parameter value oy were determined

over the run length., Figure /27 shows that the value of t could be
successfully extracted in this manner for a known system, since the mini-
mum value of the integral of the matching error occurs near Ty = Te The
iterative analysis also demonstrates the compensating effect of the a; for
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terms not included in the model. Figure /-28 shows this effect, With
the time delay term in the médel, the a pa.rametérs are plotted as a
function of fixed values of t,., As T approaches the correct value
T the ay parameters approach more closely to their corresponding ay
values, The failure of these curves to pass through the correct
values of a; is indicative of the model matching technique inaccuracy
discussed in Section 4,5 of this report.

An application of the iterative strategy to human pilot tracking
failed to yield a definite value of time delay which would produce a
significant improvement in the model, Fixed values of T, were employed
with all model parameters varying. The resulting values of the
extrapolated error were plotted (Figure ,-29). However the minimum
error appeared at L O and no other well-defined minimum was obtained.
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4.10

4e10.1

Approximation of Higher Order Model Terms by Extrapolation

Introduction

An approximation technique for parameters associated with
higher order terms in the human pilot model was proposed. This
scheme resembles the method described for the determination of time
delay. This concept has the same analytical basis and form of imple-
mentation as the extrapolated approximation of the time delay term,
A brief analysis, a comparison with the t determination method, and
a description of the results of test experiments are presented in
the following paragraphs,

Consider the example of a third order model of a human pilot

A+ ¥+ a.li +ayz = agk + o,X (h.27‘)
where )\ is a small non-zero parameter., As was the case for the
determination of v, the method of approximation is based on a first
order extrapolation in the vicinity of the solution 2
A= O:

0 obtained for

9z

z) (£,8) = z(t) + ﬁQ A (4+28)

The effect of A on the modeling error ¢ = z-y is approximated by

azo
2oV % T (he29)

&

The term A can be estimated by an approximate steepest descent opti-
mization by using the equation

. Qe
My e L.
A =-k T k ) Ty k eju, (430)
where f = )‘taf is the error criterion function, g—fiis the gradient com-
-4

ponent,, ulia the influence coefficient 3 and k is a constant of
porportionality. The influence coefficient is obtained by the solu-
tion of the equation which results from partial differentiation
with respect to A of Equation 4.27.
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& 2 af, Bz o
A et e o %2 v 2 (14431)

Substituting the definition of the influence coefficient, Equation
4431 becomes
m')‘ +U) + a.lﬁ)‘+ ayu, = K3 (4432)

In the vicinity of A = O, Equation 432 reduces to

h.)t + a'lﬁk + aju, = -‘2'0 (4e33)

A comparison of Equation (4.33) and the influence coefficient
equation for parameter ay

:".l + 0.1:11 +au = -;O (Le34)

indicates the relationship

4 =u, (4435)

A significant equipment savings in the implementation of the A
determination is achieved by the use of Equation L.35. The com-
puter diagram shown in Figure ,4- is identical with that employed
for the extrapolated time delay Ty
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4,10.2 Experimental Procedure and Results
As for the T determination, experiments were performed on the

proposed scheme toevaluate its application to modeling of botha known
system and human operator response, "Off line" and "on line" deter-
mination of A was studied for known system responses, The "on line"
iterative method previously used for the evaluation of the time

delay extrapolation approximation was again used, The results of

the known system tests are presented in Table 4~9. The known system

" employed for test purposes was given by

Ww+y+ ’1’ + ag = a3*(t) + &hx(t)
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where
a, =12

a_ = 20
-15
a ~ 0

» velue shown in Table4-9

Determination of Known System Psrameters (A Extrapolation)

Model Parameters Oblained
Run No. a.l o, a a-‘l-..._ A A |
| %ﬁr |
1 12 |20 |15 |10 {o.37 |o0.30 | @y fixed at
correct values
WOLL 1line"
2 11.9 1 19.9 | 15.3 [ 11.2|0.007 | 0,05 | ¢4 addustment
gain K = 2,5
"On line"
3 12.0120 |15 |10 | .os4 | .05 | %1 Tixed
K=0
Won line"
L 11.8 | 20.8 | 15.7 1 12.3] 029 | .05 | @1 3dJustment
gain K = 2,5

The typical results given in the table point out that once again an
accurate estimate of extrapolated terms can only be determined when
the oy parameters are fixed at the correct value. Without imple-
mentation of the higher order term in the model, the ay parameters
compensate by seeking values other than the corresponding values

of the test system,

The experiments on human pilot response data have shown a
similar effect, An iterative procedure identical to that employed
for time delay determination was used. Figure 4~3l, which is a plot
of the extrapolated error for various fixed values of A, shows no
well defined minimum other than zero. The existence of a non-zero
minimum would indicate an improved model by the inclusion of this
higher order term in the model.
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Figure 4-3
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4.11

Conclusions

The methodology study was primarily concerned with increasing
the identification accuracy of model matching techniques and the
selection of an optimunm technique. A secondary consideration waszs
the development of advanced modeling techniques which would be
capable of yielding a more precise model of the human operator.

An evaluation of the model matching techniques investigated led

to the following conclusions:

1) The iterative technique employing sensitivity cquations for
the generation of influence coefficients was found to he the most
accurate (0.5% overall error for System A ). This technique is
readily implemented on an analog computer with an interative capa-
bility and was considered the optimum technique of all techniques

investigated.

2) The identification accuracy is dependent on excitation band-
width. For the known systems evaluated, an excitation bandwidth
greater than the natural frequency of the system being modeled,

produced excellent identification accuracy on all internal para-

meters.

3) Convergence can be improved substantislly in iterative techni-
ques by equalizing the parameter adjustment rates and also by
limiting the maximum parameter correction per iteration.

4) In modeling of unknown systems, situations may arise where
the parameters may be indeterminate. However the model obtained
will match the output of the unknown system correctly and conse-
quently the system identification is unique.

5) It is theoretically possible to model the human operator's
performance in a coupled system exactly, If a matrix formulation
of the spectral analysis technique is used.

6) For the coupled systems investigated, the approximate models
of the human operator determined by the iterative techniques com-
pared favorably with the correct spectral models.
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7) The extrapolation methods used in extracting an unknown
time delay and the coefficient of the third derivative of the
response, did not give satisfactory results. However, the
model matching techniques were not very accurate at the time
of the study and consequently the extrapolation methods may be
feasible using the refined techniques just developed.

8) Closed loop model matching will be unstable if during the

convergence period, the model parameters assume values which

9) Prefiltering must be used if accurate closed loop model
matching of typical manual control systems is to be performed.
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CONCLUSIONS

Model matching techniques were used in analyzing human track-
ing performance in both uncoupled and coupled two-axis systems.
Specifically the effects of training, task difficulty and cross-
coupling were evaluated by examining the parameters of mathematical
models. Analyses of variance were performed in order to obtain
statistical significance levels for the major results.

The report is divided into three major sections. The first
deals with human performance in single and two-axis compensatory
tracking systems where the plant dynamics were identical in both
the single-axis system and the symmetrical two-axis system.
Second-order dynamics consisting of a pure integration and first-
order lag were used. Linear second-order describing functions
were used to model the operator'!s performance. Analysis of system
tracking error showed that the rate at which error decreased with
training was directly proportional to task difficulty. The ampli-
tude ratio and phase lead of the model describing function increased
with training indicating an increase in open loop bandwidth and

a decrease in phase margin. Increasing the plant lag time con-
stant resulted in an increase in the model lead time constant

and a decrease in the zero frequency gain. No significant differ-
ence was found to exist in the tracking error per axis between the
two-axis tasks and the single-axis tasks. However the model lead
time constant was significantly greater in two-axis trackinge.

The second section of the report is concerned with the evalu-~
ation of human performance in’ coupled two-axls systems. Again
the plant dynamics were of- second-order form and the human operator's

performance was modeled by a 2 x 2 matrix whose elements were

second-order describing functions. Analysis of the matrix models
obtained showed that the human operator can decouple the system
for certain forms of cross-coupling. His decoupling performance
can be predicted from decoupling equations which are readily
derived analytically. Learning was evident for all tasks with the
asymmetrical task being the most difficult.
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The third section of the report deals with a methodology study
of model matching techniques. Analysis of the identification per-
formance of continuous, iterative, and extrapolation techniques
showed that the iterative techique using sensitivity equations
for the generation of the influence coefficient, was the optimum
technique. It is readily implementable on an analog computer with
an iterative capability and possesses excellent identification
accuracy. Convergence in iterative techniques can be improved
substantially by equalizing the parameter adjustment rates and
limiting the maximum parameter correction per iteration. Good
identification requires that the excitation bandwidth be greater
than the natural frequency of the system being modeled. Also
prefiltering must be used if accurate closed loop model matching
of typical manual control systems is to be performed. Finally, it
was shown that the human operator's performance in a coupled system
could theoretically be modeled exactly if a matrix formulation of
the spectral analysis technique was used.
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A.1

APFENDIX A

CONVERGENCE STUDY OF FIRST-ORDFR MODEL FARAMETERS

Introduction

An experimental study of the convergence properties of the
continuous model matching technique was performed using a first-
order system with three parameters. The mathematical model
was of the same form as the system and contained the three para-
meters to be identified. The purpose of the study was to deter-
mine the effect of adjustment gain and parameter initial con-
ditions on the convergence characteristics of the model parameters.
Convergence was measured by final accuracy of the parameters, time
required to reach steady state and repeatability.

Identification was performed using the continuous technique
described in Section 4.2 with the slope-limited quadratic
criterion function described in the same -Section.

If the system and model inputs are denoted by x and their
respective outputs by y and z, then the differential equations

describing the dependence of y and z on x are given by

; + bly - b2; + b3x (A.l)
2+ Bz = Bx + Byx (4.2)

where b,, b, and b3 are the (constant) coefficients of the system
and Bl, B2, and 63 are the model parameters. The model parameters
are adjusted by the model-matcher so as to make e = z-y approach
zero. For this study the system parameters were chosen to have
values representative of comparable human operator models.

Specifically these values were

4
bl = L0 sec
b2 = 15
by = 25 sec T
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Equation (A.l) may be written in the transfer function form
Ko('r s +1)
2

b
where K. = 53 = 0,625
1

b

T = -f’f = 0,6 sec

T, = i, 04025 sec

2 b

1

and s is the laplace operator. A two minute tape recording of a
tracking error history obtained from a campensatory tracking
experiment was used as the input x for all phases of the study.
The convergence study was initiated by first investigating the
repeatability characteristics of the model-matcher for various

values of the initial conditions of the B parameters.,

Effect of Initial Parameter Values

A random choice for the initial parameter values will yield
a criterion- function whose magnitude at t = O will also be of a
random value. To circumvent this dilemma, the initial conditions
were chosen such that the criterion function would have a large
initial mgnituie by assigning zero initial conditions to B and
ﬂa The paramet.er Bl mst be non-zero to keep the model tr&nsfer
function ge,in from approaching infinity. Specifically 81 was
inltla.lly chosen to have values which were either high or low by
50% with respect to the known value for by With the above des-
cribed initial conditions, a repeatability experiment was performed
on the model-matcher to determine the effect of these initial
conditions on the repeatability characteristics. In these experi-
ments, the model-matcher was allowed to operate on the input data
for short lengths of time., Model-matcher gains of 30, 60 and 90
were used. Figure A-1 shows the poor repeatability characteristics
for the B parameters when Bl(O) = O.5bl and the adjustment gain
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was 60. With Bl(O) = 1.5b;, the parameter repeatability was
markedly better as shown in Figure A-2. Adjustment gains of 30
and 90 yielded similar results. The reason for this behavior

is evident if one notes that % is the model lag time constant (or,
B,is the model lag break frequency). Making Bl smaller than the
system lag break frequency bl means that the frequency content of
tie model output 2z is reduced, as compared to the system output and
the matching error does not contain enough information to obtain
accurate identification. Starting with Bl > bl is clearly
desirable since now the frequency content of z exceeds that of y
and the error is sensitive to parameter changes. This observation
is further verified in the bandwidth-convergence study discussed
in Section 4e5. Initial conditions of Bl(O) = l.5bl were used

in all of the subsequent experimental measurements.

Long Term Convergence

In operation the model-matcher should cause the B parameters
to converge on their true values if sufficient time is available.

A typical time history of this process is shown for one parameter
in Figure A-3. Note that the parameter converges approximately
to the true value in two distinct steps. Initially the convergence
is very rapid and consequently this portion of the convergence
has been termed short term convergence. After this rapid initial
convergence, the parameter requires a long settling time before

it reaches a steady-state value (i.e., long term convergence),

The initial convergence is rapid because the error ¢ is large

and consequently the slope of the criterion function is large.
However, when the error becomes small (point A on Figure A-3),

the resultant criterion function has a small slope with respect to
e which decreases the convergence rate.

An experimental study was conducted on the long-term parameter
convergence to determine the effect of adjustment gain and matching
time on parameter accuracy. Figure A-4 shows the percentage error
in the B parameters for the various adjustment gains where the

parameter values were detemined upon completion of a 2-minute
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run, Percentage errors for the equivalent transfer function
Parameters are also shown in Figure A-4. Clearly, Figure A-4
indicates that the B parameters may be obtained with a percentage
accuracy of +6% or better while the transfer function parameters
may be determined to an accuracy of ih%. In particular the para-
meter K may be determined to an accuracy of better than 0.5%.

In an attempt to increase the accuracy of the convergence
process, the same data was run through the model-matcher a number
d times. Four adjustment gains of 10, 30 60 and 90 were used
and the final parameter values of one run were made the initial
conditions for the subsequent run. Figure A-5 indicates the
dependence of B parameter percentage error on the number of
replications R as well as the gain used. In general, the percent-
age error was greater after two replications. In cases where
three replications were made, the percentage error had either
reached a plateau (for k = 60) or was approaching one (for k = 10).
All parameters had approximately the same percentage error and
were predominantly negative. Percentage errors were also cal-
culated for the equivalent transfer function Parameters and are
shown in Figure A-6. Again, the use of replications is apparently
not warranted as the accuracy is not increased substantially.

The one exception occurs when the gain is 60. Here a definite
increase in accuracy for the K and Tl parameters was obtained if
replications were made. Comparison of the accuracies for the g and
transfer function parameters indicates that the transfer function
parameters are again more accurately determined (especially for

K and Tl). This remalt is due to the fact that the transfer
function parameters are ratios of B parameters. Since the B
parameters have errors which are consistently negative and approxi-
mately equal, it follows that their ratios will be much more
accurate with the sole exception of parameter T2 which is not a
ratio but a reciprocal. Figure A-6 clearly shows that T,
much less accurate than K or Tl' (See Appendix_B for an analysis

is

of these results based on sensitivity considerations.)
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Short Term Convergence

During the long term convergence experiments it was noted
t hat the error was very close to zero at the end of ths short term
convergence periods To determine the parameter accuracy at this
point, an experiment was conducted in which the short term para-
meters were found for five randomly chosen points of the same
data run previotisly used.s These parameters were then averaged
and the RMS value of the percentage error determined. In general,
the accuracies were not as good as in the long term case. However,
the transfer function parameters with the exception of 'I‘2 were found
to be accurate to 5% over all of the adjustment gains used.
Figure A-7 compares the accuracy of the B and transfer function
parameters. Again, the transfer function parameters are more
accurate with the exception of T2. This may be explained by the
mme argument used for the long term convergence study. It is
important to realize that the short term parameters are accurate
to 104 RMS for k = 90 as their values may be determined in a second

or two while the long term parameters require about 60 seconds.

Conclusions
An experimental study of the convergence characteristics of
the continuous method using a first-order model led to the

following conclusions:

1) Parameter adjustment repeatability was good when Bl(O) > by

2) For long term convergence, the P parameters may be obtained
with a percentage accuracy of +6% while the transfer function
parameters may be determined to an accuracy of +i%.

3) Use of replications does not substantially decrease the long

term convergence error.
4) No optimum gain was found for long term convergence.

5) For short term convergence, both the B and transfer function
parameters may be determined with an accuracy of 104 (RMS) at an
adjustment gain of 90.
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6) The optimum adjustment gain for short term convergence was
90 (the highest value used).

7 For both long and short term convergence, the transfer function
parameters may be obtained with a better Percentage accuracy than
the B parameters except for the case of T2 for which no significant
difference occurs,

8) - The transfer function parameter K may be determined with the
greatest precision (0.5% for long term convergence and 2% for
short term),

Direct application of these results to the prediction of
model-matcher performance on differential equations with unknown
coefficients and of an order other than one, cannot be justified
from the experiment as the study was only concerned with an
equation of order one with lnown constant coefficients. If the
unknown coefficients are slowly time-variant it may be possible
for the model-matcher to follow the variation in the unknown
parameters with a fair degree of accuracy as the model-matcher
does exhibit a good short term parameter convergence accuracy.

An analytical study of the sensitivities of the B and transfer
function parameters has been made to explain the difference in
behavior of the two sets of parameters. This analysis in general
supports the experimental work reported here and may be found in
Appendix B,
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Figure A-1 Parameter Repeatability (Bl(o) = 20)
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B.1l

B.2

AFPENDIX B

RELATIVE SENSITIVITY OF HUMAN PILOT MODEL PARAMETERS

Problem Statement

Experimental results indicate that the parameters in a
transfer function model of the human operator, especially the
steady state gain factor K, tend to be determined with greater
precision by the model matching process than the individual
coefficients of an equivalent differential equation model. This
Appendix shows that this result is traceable to the relative
magnitude of the model sensitivities to the various parameters.

The purpgggﬁe of analyzing these relationships is to confirm
the trends exhibited by the experimental results in quantative
and qualitative terms, and to find criteria for selecting mathe-
matical model structures that yield to paramet er identification
processes with higher precision than others, On the basis of
this analysis it will also be possible to distinguish between a
case of poor computer accuracy and a mathematically unfavorable

choice of the task which the computer is asked to perform.

Equivalent Model Forms
In this discussion we compare the first-order linear model

differential equation
2 + Bz = ByX + By (B.1)

having parameters B, with the equivalent transfer function model
i

T.8 +1
Z 1
i-KT23+1 (B.2)
where
B B
2 1
K=g2, 4 =5, T=5 (B.3)
By’ 178 27
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B.3

Both model forms (B.l) and (B.2) have been used interchange-
ably in previous work. Computer results (Reference 11 ) show
that K is a well-defined parameter, whereas the terms Bl, [33
which determine K tend to drift simultaneously or yield somewhat
inconsistent results in repeated modeling runs of the same human
operator tracking datae. Tl and T2 are also defined with greater

relative accuracy than the corresponding Bi terms.

Sensitivity Equations and Sensitivity Ratios
The influence coefficients u; = az/asi are obtained by solu-

tion of the sensitifity equations derived from (B.l). In trans-

form notation, assuming zero initial values,

T.s +1

. 1
U, = KT, (T,5 + 1)2 X

T.s

2
5 ™= W X= ..°»U3 (Bek)

U

T
- 2
U3"r2s+1x

Similarly the sensitivity equations for

(o34

= 92 - 9Z_ - 82
Vorx> N1 3T, V) 3T,

yield

T.s +1
V.oeo—0 x
0 T28+l

s
Vl =K Tzs +1 X (B.5)

s(Tls +1)

V=X (T,5 + 1)2 X
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For simplification of the subsequent discussion we form the sen-
sitivity ratios

U k(1,8 +1) v, 58+l
Uy =7, = T L Tl = 2= "%s
2 sZT23+l5 Vl
qlB'% “K;Tts:ll) r02=¥'='T2;+1 (B.6)
3 2 2 s
U
o =2as poe_ _T22t1
3" T, 127V, "Ts+1

These expressions which permit an estimate of the relative magni-
tude and power of the sensitivities Ui and Vi are illustrated

by Bode diagrams shown in Figures B-1 and B-2 respectively, for
a typical case where the parameter values are

B = 40 sec™t K =0 .625

52 = 15 or Tl = 0,600 sec
B. = 25 sec1 T, = 0,025 sec
3 2

(This parameter condition has been the subject of an extensive
experimental model matching study and data analysis as reported
in Appendix A.)

While r and\q give relative sensitivities of the parameters
within the models (B.l), (B.2) respectively, the relative sensi-
tivities between the models are expressed by the ratios E} ’ l_J} ’

U . v V.
-‘73-, etce The temm 2 1
0
e N (Ba7)
Vo Tls +1

is plotted in Figure B-2. Using this term for calibration the

other relative inter-model sensitivities can be deduced.
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Bel

Discussion

In evaluating the amplitude vs. frequency plots for r and
q one must take into account the upper frequency limit of the
excitation signal x(t) occurring in human tracking studies.
On the basis of past experiments we set the cutoff frequency
roughly at w, = 5 rad/sec to obtain estimates of relative magni-
tude of the Ui and Vi' (The resulting estimates reflect this
choice of w c)' In the frequency range of interest the sensitivity

ratios behave as follows:

Table B-1
Range of Sensitivity Ratios

Differential Equation Transfer Function
Paramet ers Parameters

q12 ~6.0 see OQL} r01 ~l5 eee 10

q13 ~oo6 see 2.0 r02 ~l5 YY) 003

q23 ~0.l 40s 5.0 1'12 ~ 1 ees 03

Between Models

Yo
U

3
This leads to the following observations:

1) The parameters Bis Bos BB have essentially the same degree
of sensitivity in the vicinity of w = 1 rad/sec. This agrees
with the findings, in Appendix A, of comparable accuracy of

all B's. IJ3 dominates U2, Ul in the lower frequency region,

Ul dominates U2 at low frequencies, U 2 daminates Ul and U3 at
high frequencies. On the average the sensitivities are approxi-
mately matched.

~ 4O coe 100

2) The parameter sensitivities for K, Tl’ T2 are also of
the same order of magnitude near w = 1 rad/sec. A dominates

V; and V, very distinctly up to frequencies of 1.5 rad/sec.
Vl and V2 are of similar magnitude, but V2 tends to dominate

VO and Vl in the upper frequency range. The high accuracy of K
exhibited in the experimental study confirms this result.
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3) The most striking difference in sensitivities is indicated

by the behavior of~Vo/U3. Figure B-2 shows that K is determined
with an accuracy at least an order of magnitude higher than B

3.
This result can also be seen by noting that
Z 4
Vo & %K— -aT- (B.8)
a(_:z
Bl

For caonstant Bl = 4O,

-p 2%,
Yo 31353 40 U,

Furthermore, since near w = 1 the relative sensitivities of
the ﬁi are comparable, K can be determined much more accurately
than all the ﬂi not only BB' Thus for the case investigated the
steady state gain K is determined with an accuracy at least
an order of magnitude higher than the parameters B e In view of
the values Tor? Top and the ratio VO/U we deduce that Tl and T
should also be considerably more well defined than the B i's. This
finding is confirmed by the experimental results.

Additional insight is gained by noting that

v K
-ﬁ-l-—s=25s
3 2

v

2_ 8

hL 5

which shows that, except for very low frequencies, Vl and V2
dominate over the U's,

4) The above results are largely parameter-dependent. For
example, Tov is shaped by Tl and K. Figure B~3 illustrates how
Top varies with increases in each of these parameters, As T

1
increases, the dominance of Vo is enhanced, an increase in K
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has the opposite effect. The dominance of V, over Ups Ups Uy
depends strongly on T,. For increased T, (human pilot lag time
constant) to more typical values of O.1 - 0.2 sec the preponder-
ance of Vo decreases by an order of magnitude but is still
noticeable. T, has a muchamaller effect on the ratio 03/70 unless
T, is substantially increased above the 0.6 sec value used in this
discussion.

T, and qm are largely uninfluenced by parameter changes.

Conclusion

The simple analytical method presented here is very useful
in detecting sources of parameter definition accuracy or in-
accuracy which may otherwise remain obscure. The method can be
readily extended to practical problems characterized by second
order models, but remains limited to linear structures.

The method serves to pinpoint mathematically favorable
model formats or parameter combinations to be selected for the
optimization program. As a general method of sensitivity analysis
it has a range of applications in control engineering, system
optimization, adaptive control, and related fields where it
should be further pursued.
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APPENDIX C

TYPICAL TIME HISTORIES OF THE HUMAN OPERATOR MODEL

Human performance in two-axis systems without cross-coupling was
modeled with the conventional second-order model. A continuous model
matching technique of the form described in Section 4.2 was used to
obtain the model parameters., Figure C-1 shows a typical parameter time
history obtained for Task 4. Approximate modeling of human performance
in two-axis systems with cross-coupling was accomplished using the itera-~
tive model matching technique described in Section 3.4 Figures C-2
through C-5 show a set of typical time histories of the model parameters
for one subject's performance in Task 2. Figures C-6 through C-9 show
a similar set of time histories obtained for Task 3. The parameter
values used in the models were obtained by averaging the model para-
meters over the last minute of the modeling run. Examination of the
time histories shows that parameter convergence was good and that the
parameters were stable once convergence was reached, Similar time
histories were obtained in the determination of the other models. In
general, no difficulties were encountered other than the occasional
instability that would arise in closed loop model matching. This
instability was due to the model parameters assuming values during
the convergence process which would cause a negative phase margin,
Prefiltering of the form described in Section 4.5 was used in all
closed loop model determinations,
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